Folgen
Menglong Zhu
Menglong Zhu
Director of Machine Learning, DJI
Bestätigte E-Mail-Adresse bei dji.com - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Mobilenets: Efficient convolutional neural networks for mobile vision applications
AG Howard
arXiv preprint arXiv:1704.04861, 2017
281652017
Mobilenetv2: Inverted residuals and linear bottlenecks
M Sandler, A Howard, M Zhu, A Zhmoginov, LC Chen
Proceedings of the IEEE conference on computer vision and pattern …, 2018
259372018
Quantization and training of neural networks for efficient integer-arithmetic-only inference
B Jacob, S Kligys, B Chen, M Zhu, M Tang, A Howard, H Adam, ...
Proceedings of the IEEE conference on computer vision and pattern …, 2018
37912018
Speed/accuracy trade-offs for modern convolutional object detectors
J Huang, V Rathod, C Sun, M Zhu, A Korattikara, A Fathi, I Fischer, ...
Proceedings of the IEEE conference on computer vision and pattern …, 2017
35762017
Inverted residuals and linear bottlenecks: Mobile networks for classification, detection and segmentation
A Howard, A Zhmoginov, LC Chen, M Sandler, M Zhu
Proc. CVPR, 4510-4520, 2018
12022018
MobileNets: efficient convolutional neural networks for mobile vision applications (2017)
AG Howard, M Zhu, B Chen, D Kalenichenko, W Wang, T Weyand, ...
arXiv preprint arXiv:1704.04861 126, 2017
6492017
Sparseness meets deepness: 3d human pose estimation from monocular video
X Zhou, M Zhu, S Leonardos, KG Derpanis, K Daniilidis
Proceedings of the IEEE conference on computer vision and pattern …, 2016
5302016
From Actemes to Action: A Strongly-supervised Representation for Detailed Action Understanding
W Zhang, M Zhu, KG Derpanis
International Conference on Computer Vision, 2013
4382013
Automatic spatially-aware fashion concept discovery
X Han, Z Wu, PX Huang, X Zhang, M Zhu, Y Li, Y Zhao, LS Davis
Proceedings of the IEEE international conference on computer vision, 1463-1471, 2017
2802017
Single Image 3D Object Detection and Pose Estimation for Grasping
M Zhu, KG Derpanis, Y Yang, S Brahmbhatt, M Zhang, C Phillips, M Lecce, ...
International Conference on Robotics and Automation, 2014
2772014
Mobile video object detection with temporally-aware feature maps
M Liu, M Zhu
Proceedings of the IEEE conference on computer vision and pattern …, 2018
2472018
Monocap: Monocular human motion capture using a cnn coupled with a geometric prior
X Zhou, M Zhu, G Pavlakos, S Leonardos, KG Derpanis, K Daniilidis
IEEE transactions on pattern analysis and machine intelligence 41 (4), 901-914, 2018
2452018
MobileNetV2: Inverted residuals and linear bottlenecks. arXiv 2018
M Sandler, A Howard, M Zhu, A Zhmoginov, LC Chen
arXiv preprint arXiv:1801.04381, 1801
2291801
Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint (2017)
AG Howard, M Zhu, B Chen, D Kalenichenko, W Wang, T Weyand, ...
arXiv preprint arXiv:1704.04861, 2017
2212017
Proceedings of the IEEE conference on computer vision and pattern recognition
M Sandler, A Howard, M Zhu, A Zhmoginov, LC Chen
Proceedings of the IEEE conference on computer vision and pattern …, 2018
1982018
Sparse representation for 3D shape estimation: A convex relaxation approach
X Zhou, M Zhu, S Leonardos, K Daniilidis
IEEE transactions on pattern analysis and machine intelligence 39 (8), 1648-1661, 2016
1822016
Multi-image matching via fast alternating minimization
X Zhou, M Zhu, K Daniilidis
Proceedings of the IEEE international conference on computer vision, 4032-4040, 2015
1722015
Detect-to-retrieve: Efficient regional aggregation for image search
M Teichmann, A Araujo, M Zhu, J Sim
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019
1502019
Looking fast and slow: Memory-guided mobile video object detection
M Liu, M Zhu, M White, Y Li, D Kalenichenko
arXiv preprint arXiv:1903.10172, 2019
1072019
Mobilenets: E cient convolutional neural networks for mobile vision applications
AG Howard, M Zhu, B Chen, D Kalenichenko, W Wang, T Weyand, ...
arXiv preprint arXiv:1704.04861 2, 2017
932017
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20