Folgen
Thomas O'Leary-Roseberry
Thomas O'Leary-Roseberry
Oden Institute, The University of Texas at Austin
Bestätigte E-Mail-Adresse bei utexas.edu - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Derivative-informed projected neural networks for high-dimensional parametric maps governed by PDEs
T O’Leary-Roseberry, U Villa, P Chen, O Ghattas
Computer Methods in Applied Mechanics and Engineering 388, 114199, 2022
722022
Projected Stein variational Newton: A fast and scalable Bayesian inference method in high dimensions
P Chen, K Wu, J Chen, T O'Leary-Roseberry, O Ghattas
Advances in Neural Information Processing Systems 32, 2019
692019
Derivative-Informed Neural Operator: An Efficient Framework for High-Dimensional Parametric Derivative Learning
T O'Leary-Roseberry, P Chen, U Villa, O Ghattas
Journal of Computational Physics 496, 112555, 2024
382024
Learning high-dimensional parametric maps via reduced basis adaptive residual networks
T O’Leary-Roseberry, X Du, A Chaudhuri, JRRA Martins, K Willcox, ...
Computer Methods in Applied Mechanics and Engineering 402, 115730, 2022
31*2022
Large-scale Bayesian optimal experimental design with derivative-informed projected neural network
K Wu, T O’Leary-Roseberry, P Chen, O Ghattas
Journal of Scientific Computing 95 (1), 30, 2023
28*2023
Residual-based error correction for neural operator accelerated infinite-dimensional Bayesian inverse problems
L Cao, T O'Leary-Roseberry, PK Jha, JT Oden, O Ghattas
Journal of Computational Physics 486, 112104, 2023
232023
Inexact Newton methods for stochastic nonconvex optimization with applications to neural network training
T O'Leary-Roseberry, N Alger, O Ghattas
arXiv preprint arXiv:1905.06738, 2019
212019
Efficient PDE-constrained optimization under high-dimensional uncertainty using derivative-informed neural operators
D Luo, T O'Leary-Roseberry, P Chen, O Ghattas
arXiv preprint arXiv:2305.20053, 2023
202023
Low rank saddle free Newton: A scalable method for stochastic nonconvex optimization
T O'Leary-Roseberry, N Alger, O Ghattas
arXiv preprint arXiv:2002.02881, 2020
13*2020
Efficient and dimension independent methods for neural network surrogate construction and training
TF O'Leary-Roseberry
The University of Texas at Austin, 2020
72020
hippyflow: Dimension reduced surrogate construction for parametric PDE maps in Python
T O’Leary-Roseberry, U Villa
DOI: https://doi. org/10.5281/zenodo 4608729, 2021
5*2021
Learning optimal aerodynamic designs through multi-fidelity reduced-dimensional neural networks
X Du, JR Martins, T O’Leary-Roseberry, A Chaudhuri, O Ghattas, ...
AIAA SCITECH 2023 Forum, 0334, 2023
42023
Ill-posedness and optimization geometry for nonlinear neural network training
T O'Leary-Roseberry, O Ghattas
arXiv preprint arXiv:2002.02882, 2020
42020
A note on the relationship between PDE-based precision operators and Mat\'ern covariances
U Villa, T O'Leary-Roseberry
arXiv preprint arXiv:2407.00471, 2024
22024
Fast Unconstrained Optimization via Hessian Averaging and Adaptive Gradient Sampling Methods
T O'Leary-Roseberry, R Bollapragada
arXiv preprint arXiv:2408.07268, 2024
12024
SOUPy: Stochastic PDE-constrained optimization under high-dimensional uncertainty in Python
D Luo, P Chen, T O'Leary-Roseberry, U Villa, O Ghattas
Journal of Open Source Software 9 (99), 6101, 2024
12024
Inference of Heterogeneous Material Properties via Infinite-Dimensional Integrated DIC
J Kirchhoff, D Luo, T O'Leary-Roseberry, O Ghattas
arXiv preprint arXiv:2408.10217, 2024
12024
Efficient geometric Markov chain Monte Carlo for nonlinear Bayesian inversion enabled by derivative-informed neural operators
L Cao, T O'Leary-Roseberry, O Ghattas
arXiv preprint arXiv:2403.08220, 2024
12024
LazyDINO: Fast, scalable, and efficiently amortized Bayesian inversion via structure-exploiting and surrogate-driven measure transport
L Cao, J Chen, M Brennan, T O'Leary-Roseberry, Y Marzouk, O Ghattas
arXiv preprint arXiv:2411.12726, 2024
2024
Workshop Report 23w5129 Scientific Machine Learning
B Keith, T O’Leary-Roseberry, L Lu, S Mishra, Z Mao
2023
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20