Hossein Arefi
Hossein Arefi
Mainz University of Applied Sciences
Bestätigte E-Mail-Adresse bei - Startseite
Zitiert von
Zitiert von
A morphological reconstruction algorithm for separating off-terrain points from terrain points in laser scanning data
H Arefi, M Hahn
International Archives of Photogrammetry, Remote Sensing and Spatial …, 2005
Height estimation from single aerial images using a deep convolutional encoder-decoder network
HA Amirkolaee, H Arefi
ISPRS journal of photogrammetry and remote sensing 149, 50-66, 2019
Comparison of UAS-based photogrammetry software for 3D point cloud generation: a survey over a historical site
F Alidoost, H Arefi
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information …, 2017
2D image-to-3D model: Knowledge-based 3D building reconstruction (3DBR) using single aerial images and convolutional neural networks (CNNs)
F Alidoost, H Arefi, F Tombari
Remote sensing 11 (19), 2219, 2019
Building reconstruction using DSM and orthorectified images
H Arefi, P Reinartz
Remote Sensing 5 (4), 1681-1703, 2013
Accuracy enhancement of ASTER global digital elevation models using ICESat data
H Arefi, P Reinartz
Remote Sensing 3 (7), 1323-1343, 2011
3D building reconstruction using dense photogrammetric point cloud
S Malihi, MJ Valadan Zoej, M Hahn, M Mokhtarzade, H Arefi
The International Archives of the Photogrammetry, Remote Sensing and Spatial …, 2016
A CNN-Based Approach for Automatic Building Detection and Recognition of Roof Types Using a Single Aerial Image
F Alidoost, H Arefi
PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science 86 …, 2018
Simulation of green roofs and their potential mitigating effects on the urban heat island using an artificial neural network: A case study in Austin, Texas
A Asadi, H Arefi, H Fathipoor
Advances in Space Research 66 (8), 1846-1862, 2020
Levels of detail in 3D building reconstruction from lidar data
H Arefi, J Engels, M Hahn, H Mayer
proceedings of the International Achieves of the Photogrammetry, Remote …, 2008
Multiscale building segmentation based on deep learning for remote sensing RGB images from different sensors
M Khoshboresh-Masouleh, F Alidoost, H Arefi
Journal of Applied Remote Sensing 14 (3), 034503-034503, 2020
An image-based technique for 3D building reconstruction using multi-view UAV images
F Alidoost, H Arefi
The International Archives of the Photogrammetry, Remote Sensing and Spatial …, 2015
Unmanned aerial vehicles (UAV)-based canopy height modeling under leaf-on and leaf-off conditions for determining tree height and crown diameter (case study: Hyrcanian mixed …
V Nasiri, AA Darvishsefat, H Arefi, M Pierrot-Deseilligny, M Namiranian, ...
Canadian Journal of Forest Research 51 (7), 962-971, 2021
A novel deep learning framework by combination of subspace-based feature extraction and convolutional neural networks for hyperspectral images classification
T Alipourfard, H Arefi, S Mahmoudi
IGARSS 2018-2018 IEEE international geoscience and remote sensing symposium …, 2018
Rail track detection and projection-based 3D modeling from UAV point cloud
S Sahebdivani, H Arefi, M Maboudi
Sensors 20 (18), 5220, 2020
Iterative approach for efficient digital terrain model production from CARTOSAT-1 stereo images
H Arefi, P d’Angelo, H Mayer, P Reinartz
Journal of Applied Remote Sensing 5 (1), 053527-053527-19, 2011
Multibranch selective kernel networks for hyperspectral image classification
T Alipour-Fard, ME Paoletti, JM Haut, H Arefi, J Plaza, A Plaza
IEEE Geoscience and Remote Sensing Letters 18 (6), 1089-1093, 2020
From LiDAR point clouds to 3D building models
H Arefi
A robust object-based shadow detection method for cloud-free high resolution satellite images over urban areas and water bodies
N Tatar, M Saadatseresht, H Arefi, A Hadavand
Advances in Space Research 61 (11), 2787-2800, 2018
A hierarchical procedure for segmentation and classification of airborne LIDAR images
H Arefi, M Hahn
International Geoscience and Remote Sensing Symposium 7, 4950, 2005
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20