Eleven grand challenges in single-cell data science D Lähnemann, J Köster, E Szczurek, DJ McCarthy, SC Hicks, ... Genome biology 21, 1-35, 2020 | 1050 | 2020 |
From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy FJ Rang, WP Kloosterman, J de Ridder Genome biology 19 (1), 90, 2018 | 660 | 2018 |
Mapping and phasing of structural variation in patient genomes using nanopore sequencing M Cretu Stancu, MJ Van Roosmalen, I Renkens, MM Nieboer, ... Nature communications 8 (1), 1326, 2017 | 393 | 2017 |
Chromatin position effects assayed by thousands of reporters integrated in parallel W Akhtar, J de Jong, AV Pindyurin, L Pagie, W Meuleman, J de Ridder, ... Cell 154 (4), 914-927, 2013 | 358 | 2013 |
The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma PA Pérez-Mancera, AG Rust, L Van Der Weyden, G Kristiansen, A Li, ... Nature 486 (7402), 266-270, 2012 | 349 | 2012 |
Computational pan-genomics: status, promises and challenges Briefings in bioinformatics 19 (1), 118-135, 2018 | 345 | 2018 |
Enhancer hubs and loop collisions identified from single-allele topologies A Allahyar, C Vermeulen, BAM Bouwman, PHL Krijger, MJAM Verstegen, ... Nature genetics 50 (8), 1151-1160, 2018 | 222 | 2018 |
Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis HN March, AG Rust, NA Wright, J ten Hoeve, J de Ridder, M Eldridge, ... Nature genetics 43 (12), 1202-1209, 2011 | 213 | 2011 |
Large-scale mutagenesis in p19ARF-and p53-deficient mice identifies cancer genes and their collaborative networks AG Uren, J Kool, K Matentzoglu, J de Ridder, J Mattison, M van Uitert, ... Cell 133 (4), 727-741, 2008 | 209 | 2008 |
A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns W Jiao, G Atwal, P Polak, R Karlic, E Cuppen, A Danyi, J de Ridder, ... Nature communications 11 (1), 728, 2020 | 194 | 2020 |
Detecting statistically significant common insertion sites in retroviral insertional mutagenesis screens J De Ridder, A Uren, J Kool, M Reinders, L Wessels PLoS computational biology 2 (12), e166, 2006 | 145 | 2006 |
Pattern recognition in bioinformatics D de Ridder, J De Ridder, MJT Reinders Briefings in bioinformatics 14 (5), 633-647, 2013 | 113 | 2013 |
Chromatin landscapes of retroviral and transposon integration profiles J de Jong, W Akhtar, J Badhai, AG Rust, R Rad, J Hilkens, A Berns, ... PLoS genetics 10 (4), e1004250, 2014 | 101 | 2014 |
PAX5 is a tumor suppressor in mouse mutagenesis models of acute lymphoblastic leukemia J Dang, L Wei, J De Ridder, X Su, AG Rust, KG Roberts, D Payne-Turner, ... Blood, The Journal of the American Society of Hematology 125 (23), 3609-3617, 2015 | 93 | 2015 |
Identification of cancer genes using a statistical framework for multiexperiment analysis of nondiscretized array CGH data C Klijn, H Holstege, J de Ridder, X Liu, M Reinders, J Jonkers, L Wessels Nucleic acids research 36 (2), e13-e13, 2008 | 80 | 2008 |
Genome wide DNA methylation profiles provide clues to the origin and pathogenesis of germ cell tumors MA Rijlaarsdam, DMJ Tax, AJM Gillis, LCJ Dorssers, DC Koestler, ... PLoS One 10 (4), e0122146, 2015 | 72 | 2015 |
Ultra-fast deep-learned CNS tumour classification during surgery C Vermeulen, M Pagès-Gallego, L Kester, MEG Kranendonk, ... Nature 622 (7984), 842-849, 2023 | 60 | 2023 |
Hi-C chromatin interaction networks predict co-expression in the mouse cortex S Babaei, A Mahfouz, M Hulsman, BPF Lelieveldt, J de Ridder, ... PLoS computational biology 11 (5), e1004221, 2015 | 57 | 2015 |
FERAL: network-based classifier with application to breast cancer outcome prediction A Allahyar, J De Ridder Bioinformatics 31 (12), i311-i319, 2015 | 50 | 2015 |
The genetic heterogeneity and mutational burden of engineered melanomas in zebrafish models J Yen, RM White, DC Wedge, P Van Loo, J de Ridder, A Capper, ... Genome biology 14, 1-14, 2013 | 49 | 2013 |