Folgen
Ryo Nagai
Ryo Nagai
Preferred Networks Inc.
Keine bestätigte E-Mail-Adresse - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Completing density functional theory by machine learning hidden messages from molecules
R Nagai, R Akashi, O Sugino
npj Computational Materials 6 (1), 43, 2020
1802020
Roadmap on machine learning in electronic structure
HJ Kulik, T Hammerschmidt, J Schmidt, S Botti, MAL Marques, M Boley, ...
Electronic Structure 4 (2), 023004, 2022
1372022
Neural-network Kohn-Sham exchange-correlation potential and its out-of-training transferability
R Nagai, R Akashi, S Sasaki, S Tsuneyuki
The Journal of chemical physics 148 (24), 2018
892018
Machine-learning-based exchange correlation functional with physical asymptotic constraints
R Nagai, R Akashi, O Sugino
Physical Review Research 4 (1), 013106, 2022
482022
Machine learning exchange-correlation potential in time-dependent density-functional theory
Y Suzuki, R Nagai, J Haruyama
Physical Review A 101 (5), 050501, 2020
272020
Completing density functional theory by machine learning hidden messages from molecules. npj Computational Materials 2020, 6, 43
R Nagai, R Akashi, O Sugino
DOI, 0
5
Development of exchange-correlation functionals assisted by machine learning
R Nagai, R Akashi
Machine Learning in Molecular Sciences, 91-112, 2023
32023
Essential difference between the machine learning and artificial Kohn-Sham potentials
R Nagai, K Burke, R Akashi, O Sugino
Bulletin of the American Physical Society 65, 2020
2020
Neural-Network Implementation of Transferable Kohn-Sham Exchange-Correlation Functionals
R Nagai, R Akashi, S Sasaki, S Tsuneyuki, O Sugino
APS March Meeting Abstracts 2019, S18. 004, 2019
2019
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–9