Folgen
Yasaman Bahri
Yasaman Bahri
Research Scientist, Google DeepMind (formerly Brain)
Bestätigte E-Mail-Adresse bei google.com - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Deep neural networks as gaussian processes
J Lee*, Y Bahri*, R Novak, SS Schoenholz, J Pennington, ...
International Conference on Learning Representations, 2018, 2018
12622018
Wide neural networks of any depth evolve as linear models under gradient descent
J Lee*, L Xiao*, S Schoenholz, Y Bahri, R Novak, J Sohl-Dickstein, ...
Advances in neural information processing systems 32, 2019
10802019
Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models
A Srivastava, et al.
https://arxiv.org/abs/2206.04615, 2022
9722022
Sensitivity and generalization in neural networks: an empirical study
R Novak, Y Bahri, DA Abolafia, J Pennington, J Sohl-Dickstein
International Conference on Learning Representations, 2018, 2018
4822018
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
L Xiao, Y Bahri, J Sohl-Dickstein, SS Schoenholz, J Pennington
International Conference on Machine Learning, 2018, 2018
3692018
Bayesian Convolutional Neural Networks with Many Channels are Gaussian Processes
R Novak^, L Xiao^, J Lee*, Y Bahri*, D Abolafia, J Pennington, ...
International Conference on Learning Representations, 2019, 2019
368*2019
Localization and topology protected quantum coherence at the edge of hot matter
Y Bahri, R Vosk, E Altman, A Vishwanath
Nature communications 6, 7341, 2015
2802015
Statistical mechanics of deep learning
Y Bahri, J Kadmon, J Pennington, SS Schoenholz, J Sohl-Dickstein, ...
Annual Review of Condensed Matter Physics 11 (1), 501-528, 2020
2612020
The large learning rate phase of deep learning: the catapult mechanism
A Lewkowycz, Y Bahri, E Dyer, J Sohl-Dickstein, G Gur-Ari
arXiv preprint arXiv:2003.02218, 2020
2152020
Explaining neural scaling laws
Y Bahri, E Dyer, J Kaplan, J Lee, U Sharma
Proceedings of the National Academy of Sciences 121 (27), e2311878121, 2024
1742024
Geometry of neural network loss surfaces via random matrix theory
J Pennington, Y Bahri
International conference on machine learning, 2798-2806, 2017
1642017
Infinite attention: NNGP and NTK for deep attention networks
J Hron, Y Bahri, J Sohl-Dickstein, R Novak
International Conference on Machine Learning, 4376-4386, 2020
1292020
The evolution of out-of-distribution robustness throughout fine-tuning
A Andreassen, Y Bahri, B Neyshabur, R Roelofs
Transactions of Machine Learning Research, 2021
652021
Phonon analog of topological nodal semimetals
HC Po, Y Bahri, A Vishwanath
Physical Review B 93 (20), 205158, 2016
562016
Spatial resolution of a type II heterojunction in a single bipolar molecule
C Tao, J Sun, X Zhang, R Yamachika, D Wegner, Y Bahri, G Samsonidze, ...
Nano letters 9 (12), 3963-3967, 2009
352009
Exact posterior distributions of wide Bayesian neural networks
J Hron, Y Bahri, R Novak, J Pennington, J Sohl-Dickstein
arXiv preprint arXiv:2006.10541, 2020
312020
Detecting Majorana fermions in quasi-one-dimensional topological phases using nonlocal order parameters
Y Bahri, A Vishwanath
Physical review b 89 (15), 155135, 2014
312014
Stable non-Fermi-liquid phase of itinerant spin-orbit coupled ferromagnets
Y Bahri, AC Potter
Physical Review B 92 (3), 035131, 2015
172015
Quantum Many-Body Physics Calculations with Large Language Models
H Pan, N Mudur, W Taranto, M Tikhanovskaya, S Venugopalan, Y Bahri, ...
arXiv preprint arXiv:2403.03154, 2024
32024
Statistical physics of regression with quadratic models
B Bordelon, C Pehlevan, Y Bahri
Bulletin of the American Physical Society, 2024
2024
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20