Stuart Johnston
Stuart Johnston
Senior Lecturer, University of Melbourne
Bestätigte E-Mail-Adresse bei
Zitiert von
Zitiert von
Estimating cell diffusivity and cell proliferation rate by interpreting IncuCyte ZOOM™ assay data using the Fisher-Kolmogorov model
ST Johnston, ET Shah, LK Chopin, DLS McElwain, MJ Simpson
BMC Systems Biology 9 (38), 2015
How much information can be obtained from tracking the position of the leading edge in a scratch assay?
ST Johnston, MJ Simpson, DLS McElwain
Journal of the Royal Society Interface 11 (97), 20140325, 2014
Self-assembly of nano-to macroscopic metal–phenolic materials
G Yun, QA Besford, ST Johnston, JJ Richardson, S Pan, M Biviano, ...
Chemistry of Materials 30 (16), 5750-5758, 2018
Mean-field descriptions of collective migration with strong adhesion
ST Johnston, MJ Simpson, RE Baker
Physical Review E 85 (5), 051922, 2012
Interpreting scratch assays using pair density dynamics and approximate Bayesian computation
ST Johnston, MJ Simpson, DLS McElwain, BJ Binder, JV Ross
Open Biology 4 (9), 140097, 2014
Quantifying the effect of experimental design choices for in vitro scratch assays
ST Johnston, JV Ross, BJ Binder, DLS McElwain, P Haridas, MJ Simpson
Journal of Theoretical Biology 400, 19-31, 2016
Co-operation, competition and crowding: a discrete framework linking Allee kinetics, nonlinear diffusion, shocks and sharp-fronted travelling waves
ST Johnston, RE Baker, DLS McElwain, MJ Simpson
Scientific Reports 7 (1), 42134, 2017
Lattice-free descriptions of collective motion with crowding and adhesion
ST Johnston, MJ Simpson, MJ Plank
Physical Review E 88 (6), 062720, 2013
An analytical approach for quantifying the influence of nanoparticle polydispersity on cellular delivered dose
ST Johnston, M Faria, EJ Crampin
Journal of The Royal Society Interface 15 (144), 20180364, 2018
Selective metal–phenolic assembly from complex multicomponent mixtures
G Lin, MA Rahim, MG Leeming, C Cortez-Jugo, QA Besford, Y Ju, ...
ACS applied materials & interfaces 11 (19), 17714-17721, 2019
Revisiting cell–particle association in vitro: A quantitative method to compare particle performance
M Faria, KF Noi, Q Dai, M Björnmalm, ST Johnston, K Kempe, F Caruso, ...
Journal of controlled release 307, 355-367, 2019
Modelling the movement of interacting cell populations: a moment dynamics approach
ST Johnston, MJ Simpson, RE Baker
Journal of Theoretical Biology 370, 81-92, 2015
Unpacking the Allee effect: determining individual-level mechanisms that drive global population dynamics
NT Fadai, ST Johnston, MJ Simpson
Proceedings of the Royal Society A 476 (2241), 20200350, 2020
Understanding nano-engineered particle–cell interactions: biological insights from mathematical models
ST Johnston, M Faria, EJ Crampin
Nanoscale Advances 3 (8), 2139-2156, 2021
Spatio-temporal analysis of nanoparticles in live tumor spheroids impacted by cell origin and density
A Ahmed-Cox, E Pandzic, ST Johnston, C Heu, J McGhee, FM Mansfeld, ...
Journal of Controlled Release 341, 661-675, 2022
Isolating the sources of heterogeneity in nano-engineered particle–cell interactions
ST Johnston, M Faria, EJ Crampin
Journal of the Royal Society Interface 17 (166), 20200221, 2020
Modelling collective navigation via non-local communication
ST Johnston, KJ Painter
Journal of the Royal Society Interface 18 (182), 20210383, 2021
The impact of short-and long-range perception on population movements
ST Johnston, KJ Painter
Journal of Theoretical Biology 460, 227-242, 2019
Predicting population extinction in lattice-based birth–death–movement models
ST Johnston, MJ Simpson, EJ Crampin
Proceedings of the Royal Society A 476 (2238), 20200089, 2020
IP3R activity increases propensity of RyR-mediated sparks by elevating dyadic [Ca2+]
J Chung, A Tilūnaitė, D Ladd, H Hunt, C Soeller, EJ Crampin, ...
Mathematical biosciences 355, 108923, 2023
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20