A Tikhonov-based projection iteration for nonlinear ill-posed problems with sparsity constraints R Ramlau, G Teschke Numerische Mathematik 104, 177-203, 2006 | 137 | 2006 |
Morozov's discrepancy principle for Tikhonov-type functionals with nonlinear operators SW Anzengruber, R Ramlau Inverse Problems 26 (2), 025001, 2009 | 128 | 2009 |
A Mumford–Shah level-set approach for the inversion and segmentation of X-ray tomography data R Ramlau, W Ring Journal of Computational Physics 221 (2), 539-557, 2007 | 128 | 2007 |
Regularization by fractional filter methods and data smoothing E Klann, R Ramlau Inverse Problems 24 (2), 025018, 2008 | 100 | 2008 |
TIGRA—an iterative algorithm for regularizing nonlinear ill-posed problems R Ramlau Inverse Problems 19 (2), 433, 2003 | 99 | 2003 |
The MICADO first light imager for the ELT: overview, operation, simulation R Davies, J Alves, Y Clenet, F Lang-Bardl, H Nicklas, JU Pott, ... Ground-based and Airborne Instrumentation for Astronomy VII 10702, 570-581, 2018 | 85 | 2018 |
MICADO: first light imager for the E-ELT R Davies, J Schubert, M Hartl, J Alves, Y Clénet, F Lang-Bardl, H Nicklas, ... Ground-based and Airborne Instrumentation for Astronomy VI 9908, 621-632, 2016 | 85 | 2016 |
Mass and aerodynamic imbalance estimates of wind turbines J Niebsch, R Ramlau, TT Nguyen Energies 3 (4), 696-710, 2010 | 77 | 2010 |
A modified Landweber method for inverse problems R Ramlau Numerical functional analysis and optimization 20 (1-2), 79-98, 1999 | 76 | 1999 |
Tikhonov replacement functionals for iteratively solving nonlinear operator equations R Ramlau, G Teschke Inverse Problems 21 (5), 1571, 2005 | 72 | 2005 |
Morozov's discrepancy principle for Tikhonov-regularization of nonlinear operators R Ramlau Taylor & Francis Group 23 (1-2), 147-172, 2002 | 70 | 2002 |
Imbalance estimation without test masses for wind turbines R Ramlau, J Niebsch | 67 | 2009 |
An adaptive discretization for Tikhonov-Phillips regularization with a posteriori parameter selection P Maaß, SV Pereverzev, R Ramlau, SG Solodky | 65 | 1998 |
Regularization properties of Tikhonov regularization with sparsity constraints R Ramlau Electron. Trans. Numer. Anal 30, 54-74, 2008 | 57 | 2008 |
An efficient solution to the atmospheric turbulence tomography problem using Kaczmarz iteration R Ramlau, M Rosensteiner Inverse Problems 28 (9), 095004, 2012 | 55 | 2012 |
Convergence rates for regularization with sparsity constraints R Ramlau, E Resmerita Electronic Transactions on Numerical Analysis 37, 87-104, 2010 | 55 | 2010 |
An iterative algorithm for nonlinear inverse problems with joint sparsity constraints in vector-valued regimes and an application to color image inpainting G Teschke, R Ramlau Inverse Problems 23 (5), 1851, 2007 | 55 | 2007 |
An analysis of Tikhonov regularization for nonlinear ill-posed problems under a general smoothness assumption S Lu, SV Pereverzev, R Ramlau Inverse Problems 23 (1), 217, 2006 | 54 | 2006 |
Kaczmarz algorithm for multiconjugated adaptive optics with laser guide stars M Rosensteiner, R Ramlau JOSA A 30 (8), 1680-1686, 2013 | 53 | 2013 |
Cumulative wavefront reconstructor for the Shack-Hartmann sensor M Zhariy, A Neubauer, M Rosensteiner, R Ramlau Signal Recovery and Synthesis, JTuA4, 2011 | 53 | 2011 |