Folgen
Erik Bodin
Erik Bodin
Research Associate at University of Cambridge
Bestätigte E-Mail-Adresse bei erikbodin.com
Titel
Zitiert von
Zitiert von
Jahr
Compositional uncertainty in deep Gaussian processes
I Ustyuzhaninov, I Kazlauskaite, M Kaiser, E Bodin, NDF Campbell, CH Ek
The Conference on Uncertainty in Artificial Intelligence (UAI 2020), 2019
232019
Modulating Surrogates for Bayesian Optimization
E Bodin, M Kaiser, I Kazlauskaite, Z Dai, NDF Campbell, CH Ek
International Conference on Machine Learning (ICML 2020), 2019
162019
Latent gaussian process regression
E Bodin, NDF Campbell, CH Ek
arXiv preprint arXiv:1707.05534, 2017
152017
Nonparametric Inference for Auto-Encoding Variational Bayes
E Bodin, I Malik, CH Ek, NDF Campbell
Advances in Approximate Bayesian Inference @ NeurIPS 2017, 2017
142017
Black-box density function estimation using recursive partitioning
E Bodin, Z Dai, NDF Campbell, CH Ek
International Conference on Machine Learning (ICML 2021), 2020
52020
Gaussian process deep belief networks: A smooth generative model of shape with uncertainty propagation
A Di Martino, E Bodin, CH Ek, NDF Campbell
Computer Vision–ACCV 2018: 14th Asian Conference on Computer Vision, Perth …, 2019
32019
Linear combinations of Gaussian latents in generative models: interpolation and beyond
E Bodin, CH Ek, H Moss
arXiv preprint arXiv:2408.08558, 2024
2024
Linear combinations of latents in diffusion models: interpolation and beyond
E Bodin, H Moss, CH Ek
arXiv e-prints, arXiv: 2408.08558, 2024
2024
Making Differentiable Architecture Search less local
E Bodin, F Tomasi, Z Dai
Workshop on Neural Architecture Search (ICLR 2021), 2021
2021
Bayesian inference by active sampling
E Bodin
University of Bristol, 2021
2021
Black-box density function estimation using recursive partitioning Supplementary material
E Bodin, Z Dai, NDF Campbell, CH Ek
Density function estimation using ergodic recursion
E Bodin, Z Dai, NDF Campbell, CH Ek
Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), 0
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–12