Junwei Ou
Junwei Ou
National University of Defense Technology
Bestätigte E-Mail-Adresse bei - Startseite
Zitiert von
Zitiert von
A prediction strategy based on decision variable analysis for dynamic multi-objective optimization
J Zheng, Y Zhou, J Zou, S Yang, J Ou, Y Hu
Swarm and Evolutionary Computation 60, 100786, 2021
A dynamic multi-objective evolutionary algorithm based on intensity of environmental change
Y Hu, J Zheng, J Zou, S Yang, J Ou, R Wang
Information Sciences 523, 49-62, 2020
A dynamic multi-objective particle swarm optimization algorithm based on adversarial decomposition and neighborhood evolution
J Zheng, Z Zhang, J Zou, S Yang, J Ou, Y Hu
Swarm and Evolutionary Computation 69, 100987, 2022
A pareto-based evolutionary algorithm using decomposition and truncation for dynamic multi-objective optimization
J Ou, J Zheng, G Ruan, Y Hu, J Zou, M Li, S Yang, X Tan
Applied Soft Computing 85, 105673, 2019
A decision variable classification-based cooperative coevolutionary algorithm for dynamic multiobjective optimization
H Xie, J Zou, S Yang, J Zheng, J Ou, Y Hu
Information Sciences 560, 307-330, 2021
Deep reinforcement learning method for satellite range scheduling problem
J Ou, L Xing, F Yao, M Li, J Lv, Y He, Y Song, J Wu, G Zhang
Swarm and Evolutionary Computation 77, 101233, 2023
Ensemble reinforcement learning: A survey
Y Song, PN Suganthan, W Pedrycz, J Ou, Y He, Y Chen, Y Wu
Applied Soft Computing, 110975, 2023
Solving dynamic multi-objective problems with an evolutionary multi-directional search approach
Y Hu, J Ou, J Zheng, J Zou, S Yang, G Ruan
Knowledge-Based Systems 194, 105175, 2020
A cluster-based genetic optimization method for satellite range scheduling system
Y Song, J Ou, J Wu, Y Wu, L Xing, Y Chen
Swarm and Evolutionary Computation 79, 101316, 2023
A data-driven improved genetic algorithm for agile earth observation satellite scheduling with time-dependent transition time
J Wu, B Song, G Zhang, J Ou, Y Chen, F Yao, L He, L Xing
Computers & Industrial Engineering 174, 108823, 2022
An efficient local search heuristic for earth observation satellite integrated scheduling
Y Chen, J Lu, R He, J Ou
Applied Sciences 10 (16), 5616, 2020
A novel prediction strategy based on change degree of decision variables for dynamic multi-objective optimization
J Ou, L Xing, M Liu, L Yang
IEEE Access 8, 13362-13374, 2019
Individual-based self-learning prediction method for dynamic multi-objective optimization
J Ou, M Li, L Xing, J Lv, Y Hu, N Dong, G Zhang
Information Sciences 613, 401-418, 2022
An evolutionary dynamic multi-objective optimization algorithm based on center-point prediction and sub-population autonomous guidance
J Zhou, J Zou, S Yang, G Ruan, J Ou, J Zheng
2018 IEEE Symposium Series on Computational Intelligence (SSCI), 2148-2154, 2018
Generalized Model and Deep Reinforcement Learning-Based Evolutionary Method for Multitype Satellite Observation Scheduling
Y Song, J Ou, W Pedrycz, PN Suganthan, X Wang, L Xing, Y Zhang
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024
Learning adaptive genetic algorithm for earth electromagnetic satellite scheduling
Y Song, J Ou, PN Suganthan, W Pedrycz, Q Yang, L Xing
IEEE Transactions on Aerospace and Electronic Systems, 2023
Frequent pattern-based parallel search approach for time-dependent agile earth observation satellite scheduling
J Wu, F Yao, Y Song, L He, F Lu, Y Du, J Yan, Y Chen, L Xing, J Ou
Information Sciences 636, 118924, 2023
An improved heterogeneous graph convolutional network for job recommendation
H Wang, W Yang, J Li, J Ou, Y Song, Y Chen
Engineering Applications of Artificial Intelligence 126, 107147, 2023
A reinforcement-learning-driven bees algorithm for large-scale earth observation satellite scheduling
Y Song, J Ou, DT Pham, J Li, J Huang, L Xing
International Conference on Bio-Inspired Computing: Theories and …, 2022
On the effect of particle update modes in particle swarm optimisation
N Dong, R Wang, T Zhang, J Ou
International Journal of Bio-Inspired Computation 21 (4), 230-239, 2023
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20