Folgen
Frederic Besse
Frederic Besse
DeepMind
Bestätigte E-Mail-Adresse bei google.com
Titel
Zitiert von
Zitiert von
Jahr
Neural scene representation and rendering
SMA Eslami, D Jimenez Rezende, F Besse, F Viola, AS Morcos, ...
Science 360 (6394), 1204-1210, 2018
7532018
Towards conceptual compression
K Gregor, F Besse, D Jimenez Rezende, I Danihelka, D Wierstra
Advances in neural information processing systems 29, 2016
338*2016
Pmbp: Patchmatch belief propagation for correspondence field estimation
F Besse, C Rother, A Fitzgibbon, J Kautz
International Journal of Computer Vision 110, 2-13, 2014
2842014
Temporal difference variational auto-encoder
K Gregor, G Papamakarios, F Besse, L Buesing, T Weber
arXiv preprint arXiv:1806.03107, 2018
1562018
Convolution by evolution: Differentiable pattern producing networks
C Fernando, D Banarse, M Reynolds, F Besse, D Pfau, M Jaderberg, ...
Proceedings of the Genetic and Evolutionary Computation Conference 2016, 109-116, 2016
1402016
Shaping belief states with generative environment models for rl
K Gregor, D Jimenez Rezende, F Besse, Y Wu, H Merzic, A van den Oord
Advances in Neural Information Processing Systems 32, 2019
1232019
Learning and querying fast generative models for reinforcement learning
L Buesing, T Weber, S Racaniere, SM Eslami, D Rezende, DP Reichert, ...
arXiv preprint arXiv:1802.03006, 2018
1152018
Highly overparameterized optical flow using patchmatch belief propagation
M Hornáček, F Besse, J Kautz, A Fitzgibbon, C Rother
Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland …, 2014
442014
Causally correct partial models for reinforcement learning
DJ Rezende, I Danihelka, G Papamakarios, NR Ke, R Jiang, T Weber, ...
arXiv preprint arXiv:2002.02836, 2020
372020
Demis Hassabis, et al. Learning and querying fast generative models for reinforcement learning
L Buesing, T Weber, S Racaniere, SM Eslami, D Rezende, DP Reichert, ...
arXiv preprint arXiv:1802.03006 2, 2018
362018
Learning models for visual 3d localization with implicit mapping
D Rosenbaum, F Besse, F Viola, DJ Rezende, SM Eslami
arXiv preprint arXiv:1807.03149, 2018
342018
TF-Replicator: Distributed machine learning for researchers
P Buchlovsky, D Budden, D Grewe, C Jones, J Aslanides, F Besse, ...
arXiv preprint arXiv:1902.00465, 2019
252019
Encoding spatial relations from natural language
T Ramalho, T Kočiský, F Besse, SM Eslami, G Melis, F Viola, P Blunsom, ...
arXiv preprint arXiv:1807.01670, 2018
142018
Self-organizing intelligent matter: A blueprint for an ai generating algorithm
K Gregor, F Besse
arXiv preprint arXiv:2101.07627, 2021
122021
Scaling instructable agents across many simulated worlds
MA Raad, A Ahuja, C Barros, F Besse, A Bolt, A Bolton, B Brownfield, ...
arXiv preprint arXiv:2404.10179, 2024
102024
PatchMatch Belief Propagation for Correspondence Field Estimation and Its Applications
FO Besse
UCL (University College London), 2013
82013
Bethanie Brownfield, Gavin Buttimore, Max Cant, Sarah Chakera, et al. Scaling instructable agents across many simulated worlds
M Abi Raad, A Ahuja, C Barros, F Besse, A Bolt, A Bolton
arXiv preprint arXiv:2404.10179, 2024
72024
Scaling instructable agents across many simulated worlds
M Abi Raad, A Ahuja, C Barros, F Besse, A Bolt, A Bolton, B Brownfield, ...
arXiv e-prints, arXiv: 2404.10179, 2024
52024
Learning to encode spatial relations from natural language
T Ramalho, T Kocisky, F Besse, SMA Eslami, G Melis, F Viola, P Blunsom, ...
32018
Scene understanding and generation using neural networks
DJ Rezende, SM Eslami, K Gregor, FO Besse
US Patent App. 18/164,021, 2023
2023
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20