Folgen
Karthik Narasimhan
Karthik Narasimhan
Associate Professor, Princeton University
Bestätigte E-Mail-Adresse bei princeton.edu - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Improving Language Understanding by Generative Pre-Training (GPT)
A Radford, K Narasimhan, T Salimans, I Sutskever
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language …, 2018
13587*2018
Tree of thoughts: Deliberate problem solving with large language models
S Yao, D Yu, J Zhao, I Shafran, TL Griffiths, Y Cao, K Narasimhan
Neural Information Processing Systems (NeurIPS), 2023
21952023
React: Synergizing reasoning and acting in language models
S Yao, J Zhao, D Yu, N Du, I Shafran, K Narasimhan, Y Cao
International Conference on Learning Representations (ICLR), 2023
21662023
Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation
TD Kulkarni, KR Narasimhan, A Saeedi, JB Tenenbaum
Neural Information Processing Systems (NIPS), 2016
15062016
Reflexion: Language agents with verbal reinforcement learning
N Shinn, F Cassano, A Gopinath, K Narasimhan, S Yao
Advances in Neural Information Processing Systems 36, 2024
1444*2024
Language understanding for text-based games using deep reinforcement learning
K Narasimhan, T Kulkarni, R Barzilay
Empirical Methods in Natural Language Processing (EMNLP), 2015
4942015
Webshop: Towards scalable real-world web interaction with grounded language agents
S Yao, H Chen, J Yang, K Narasimhan
Advances in Neural Information Processing Systems (NeurIPS), 2022
3482022
Toxicity in chatgpt: Analyzing persona-assigned language models
A Deshpande, V Murahari, T Rajpurohit, A Kalyan, K Narasimhan
Findings of EMNLP, 2023
3372023
A generalized algorithm for multi-objective reinforcement learning and policy adaptation
R Yang, X Sun, K Narasimhan
Advances in Neural Information Processing Systems (NeurIPS), 2019
3122019
SWE-bench: Can Language Models Resolve Real-World GitHub Issues?
CE Jimenez, J Yang, A Wettig, S Yao, K Pei, O Press, K Narasimhan
International Conference on Learning Representations (ICLR), 2024
3052024
Projection-Based Constrained Policy Optimization.
TY Yang, J Rosca, K Narasimhan, PJ Ramadge
International Conference on Learning Representations, 2020
3002020
Cognitive architectures for language agents
TR Sumers, S Yao, K Narasimhan, TL Griffiths
arXiv preprint arXiv:2309.02427, 2023
2062023
Improving Information Extraction by Acquiring External Evidence with Reinforcement Learning
K Narasimhan, A Yala, R Barzilay
Empirical Methods in Natural Language Processing (EMNLP), 2016
1972016
Keep CALM and Explore: Language Models for Action Generation in Text-based Games
S Yao, R Rao, M Hausknecht, K Narasimhan
Empirical Methods in Natural Language Processing (EMNLP), 2020
1352020
Nonparametric Spherical Topic Modeling with Word Embeddings
K Batmanghelich, A Saeedi, K Narasimhan, S Gershman
Association for Computational Linguistics (ACL), 2016
1292016
Swe-agent: Agent-computer interfaces enable automated software engineering
J Yang, CE Jimenez, A Wettig, K Lieret, S Yao, K Narasimhan, O Press
arXiv preprint arXiv:2405.15793, 2024
1242024
sk_p: a neural program corrector for MOOCs
Y Pu, K Narasimhan, A Solar-Lezama, R Barzilay
Companion Proceedings of the 2016 ACM SIGPLAN International Conference on …, 2016
1152016
Neural Generation of Regular Expressions from Natural Language with Minimal Domain Knowledge
N Locascio, K Narasimhan, E DeLeon, N Kushman, R Barzilay
Empirical Methods in Natural Language Processing (EMNLP), 2016
1142016
Grounding language for transfer in deep reinforcement learning
K Narasimhan, R Barzilay, T Jaakkola
Journal of Artificial Intelligence Research 63, 849-874, 2018
982018
Self-Attention Networks Can Process Bounded Hierarchical Languages
S Yao, B Peng, C Papadimitriou, K Narasimhan
ACL, 2021
942021
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20