Heterogeneous graph attention network X Wang, H Ji, C Shi, B Wang, Y Ye, P Cui, PS Yu The world wide web conference, 2022-2032, 2019 | 2477 | 2019 |
A survey on malware detection using data mining techniques Y Ye, T Li, D Adjeroh, SS Iyengar ACM Computing Surveys (CSUR) 50 (3), 1-40, 2017 | 692 | 2017 |
A survey on heterogeneous graph embedding: methods, techniques, applications and sources X Wang, D Bo, C Shi, S Fan, Y Ye, SY Philip IEEE Transactions on Big Data 9 (2), 415-436, 2022 | 329 | 2022 |
IMDS: Intelligent malware detection system Y Ye, D Wang, T Li, D Ye Proceedings of the 13th ACM SIGKDD international conference on Knowledge …, 2007 | 296 | 2007 |
Hindroid: An intelligent android malware detection system based on structured heterogeneous information network S Hou, Y Ye, Y Song, M Abdulhayoglu Proceedings of the 23rd ACM SIGKDD international conference on knowledge …, 2017 | 294 | 2017 |
An intelligent PE-malware detection system based on association mining Y Ye, D Wang, T Li, D Ye, Q Jiang Journal in computer virology 4, 323-334, 2008 | 273 | 2008 |
DL4MD: A deep learning framework for intelligent malware detection W Hardy, L Chen, S Hou, Y Ye, X Li Proceedings of the International Conference on Data Science (ICDATA), 61, 2016 | 266 | 2016 |
Deep4maldroid: A deep learning framework for android malware detection based on linux kernel system call graphs S Hou, A Saas, L Chen, Y Ye 2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops …, 2016 | 260 | 2016 |
Heterogeneous graph structure learning for graph neural networks J Zhao, X Wang, C Shi, B Hu, G Song, Y Ye Proceedings of the AAAI conference on artificial intelligence 35 (5), 4697-4705, 2021 | 246 | 2021 |
Malicious sequential pattern mining for automatic malware detection Y Fan, Y Ye, L Chen Expert Systems with Applications 52, 16-25, 2016 | 209 | 2016 |
Knowledge-aware coupled graph neural network for social recommendation C Huang, H Xu, Y Xu, P Dai, L Xia, M Lu, L Bo, H Xing, X Lai, Y Ye Proceedings of the AAAI conference on artificial intelligence 35 (5), 4115-4122, 2021 | 179 | 2021 |
Automatic detection of helmet uses for construction safety AHM Rubaiyat, TT Toma, M Kalantari-Khandani, SA Rahman, L Chen, ... 2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops …, 2016 | 179 | 2016 |
Automatic malware categorization using cluster ensemble Y Ye, T Li, Y Chen, Q Jiang Proceedings of the 16th ACM SIGKDD international conference on Knowledge …, 2010 | 154 | 2010 |
CIMDS: adapting postprocessing techniques of associative classification for malware detection Y Ye, T Li, Q Jiang, Y Wang IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and …, 2010 | 146 | 2010 |
DeepAM: a heterogeneous deep learning framework for intelligent malware detection Y Ye, L Chen, S Hou, W Hardy, X Li Knowledge and Information Systems 54, 265-285, 2018 | 144 | 2018 |
SBMDS: an interpretable string based malware detection system using SVM ensemble with bagging Y Ye, L Chen, D Wang, T Li, Q Jiang, M Zhao Journal in computer virology 5, 283-293, 2009 | 143 | 2009 |
Adversarial machine learning in malware detection: Arms race between evasion attack and defense L Chen, Y Ye, T Bourlai 2017 European intelligence and security informatics conference (EISIC), 99-106, 2017 | 141 | 2017 |
Temporal network embedding with micro-and macro-dynamics Y Lu, X Wang, C Shi, PS Yu, Y Ye Proceedings of the 28th ACM international conference on information and …, 2019 | 140 | 2019 |
Trustllm: Trustworthiness in large language models L Sun, Y Huang, H Wang, S Wu, Q Zhang, C Gao, Y Huang, W Lyu, ... arXiv preprint arXiv:2401.05561, 2024 | 133 | 2024 |
Cotext: Multi-task learning with code-text transformer L Phan, H Tran, D Le, H Nguyen, J Anibal, A Peltekian, Y Ye arXiv preprint arXiv:2105.08645, 2021 | 129 | 2021 |