Folgen
Lydia Tapia
Lydia Tapia
Associate Professor of Computer Science, University of New Mexico
Bestätigte E-Mail-Adresse bei cs.unm.edu - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Prm-rl: Long-range robotic navigation tasks by combining reinforcement learning and sampling-based planning
A Faust, K Oslund, O Ramirez, A Francis, L Tapia, M Fiser, J Davidson
2018 IEEE international conference on robotics and automation (ICRA), 5113-5120, 2018
3822018
Automated aerial suspended cargo delivery through reinforcement learning
A Faust, I Palunko, P Cruz, R Fierro, L Tapia
Artificial Intelligence 247, 381-398, 2017
1882017
Learning swing-free trajectories for UAVs with a suspended load
A Faust, I Palunko, P Cruz, R Fierro, L Tapia
2013 IEEE International Conference on Robotics and Automation, 4902-4909, 2013
1792013
Hybrid dynamic moving obstacle avoidance using a stochastic reachable set-based potential field
N Malone, HT Chiang, K Lesser, M Oishi, L Tapia
IEEE Transactions on Robotics 33 (5), 1124-1138, 2017
1762017
RL-RRT: Kinodynamic motion planning via learning reachability estimators from RL policies
HTL Chiang, J Hsu, M Fiser, L Tapia, A Faust
IEEE Robotics and Automation Letters 4 (4), 4298-4305, 2019
1752019
Path-guided artificial potential fields with stochastic reachable sets for motion planning in highly dynamic environments
HT Chiang, N Malone, K Lesser, M Oishi, L Tapia
2015 IEEE international conference on robotics and automation (ICRA), 2347-2354, 2015
1602015
COLREG-RRT: An RRT-based COLREGS-compliant motion planner for surface vehicle navigation
HTL Chiang, L Tapia
IEEE Robotics and Automation Letters 3 (3), 2024-2031, 2018
1592018
A machine learning approach for feature-sensitive motion planning
M Morales, L Tapia, R Pearce, S Rodriguez, NM Amato
Algorithmic Foundations of Robotics VI, 361-376, 2005
1432005
Design and implementation of a virtual reality system and its application to training medical first responders
S Stansfield, D Shawver, A Sobel, M Prasad, L Tapia
Presence: Teleoperators & Virtual Environments 9 (6), 524-556, 2000
1232000
A reinforcement learning approach towards autonomous suspended load manipulation using aerial robots
I Palunko, A Faust, P Cruz, L Tapia, R Fierro
2013 IEEE international conference on robotics and automation, 4896-4901, 2013
1092013
Simulating protein motions with rigidity analysis
S Thomas, X Tang, L Tapia, NM Amato
Journal of Computational Biology 14 (6), 839-855, 2007
832007
Simulating RNA folding kinetics on approximated energy landscapes
X Tang, S Thomas, L Tapia, DP Giedroc, NM Amato
Journal of molecular biology 381 (4), 1055-1067, 2008
692008
Reinforcement learning for balancing a flying inverted pendulum
R Figueroa, A Faust, P Cruz, L Tapia, R Fierro
Proceeding of the 11th World Congress on Intelligent Control and Automation …, 2014
472014
Stochastic reachability based motion planning for multiple moving obstacle avoidance
N Malone, K Lesser, M Oishi, L Tapia
Proceedings of the 17th international conference on Hybrid systems …, 2014
382014
A motion planning approach to studying molecular motions
L Tapia, S Thomas, NM Amato
382010
Redundant component and intelligent computerized control system for multi-rotor VTOL aircraft
AP Ruymgaart, L Tapia, A Faust, R Fierro
US Patent 9,828,107, 2017
372017
Aggressive moving obstacle avoidance using a stochastic reachable set based potential field
HT Chiang, N Malone, K Lesser, M Oishi, L Tapia
Algorithmic Foundations of Robotics XI: Selected Contributions of the …, 2015
332015
Continuous action reinforcement learning for control-affine systems with unknown dynamics
A Faust, P Ruymgaart, M Salman, R Fierro, L Tapia
IEEE/CAA Journal of automatica Sinica 1 (3), 323-336, 2014
322014
Kinetics analysis methods for approximate folding landscapes
L Tapia, X Tang, S Thomas, NM Amato
Bioinformatics 23 (13), i539-i548, 2007
322007
Simulating protein motions with rigidity analysis
S Thomas, X Tang, L Tapia, NM Amato
Research in Computational Molecular Biology: 10th Annual International …, 2006
312006
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20