Shreyansh Daftry
Shreyansh Daftry
NASA Jet Propulsion Laboratory | Caltech | Ex-CMU | Ex-TU Graz
Bestätigte E-Mail-Adresse bei
Zitiert von
Zitiert von
Nebula: Quest for robotic autonomy in challenging environments; team costar at the darpa subterranean challenge
A Agha, K Otsu, B Morrell, DD Fan, R Thakker, A Santamaria-Navarro, ...
arXiv preprint arXiv:2103.11470, 2021
Building with Drones: Accurate 3D Facade Reconstruction using MAVs
S Daftry, C Hoppe, H Bischof
IEEE International Conference on Robotics and Automation (ICRA), 2015
Introspective Perception: Learning to Predict Failures in Vision Systems
S Daftry, S Zeng, JA Bagnell, M Hebert
IEEE International Conference on Intelligent Robots and Systems (IROS), 2016
Learning Transferable Policies for Monocular Reactive MAV Control
S Daftry, JA Bagnell, M Hebert
International Symposium on Experimental Robotics (ISER), 2016
Vision and Learning for Deliberative Monocular Cluttered Flight
D Dey, KS Shankar, S Zeng, R Mehta, MT Agcayazi, C Eriksen, S Daftry, ...
International Conference on Field and Service Robotics (FSR), 2015
Evaluations on multi-scale camera networks for precise and geo-accurate reconstructions from aerial and terrestrial images with user guidance
M Rumpler, A Tscharf, C Mostegel, S Daftry, C Hoppe, R Prettenthaler, ...
Computer Vision and Image Understanding (CVIU), 2016
Automated End-to-End Workflow for Precise and Geo-accurate Reconstructions using Fiducial Markers
M Rumpler, S Daftry, A Tscharf, R Prettenthaler, C Hoppe, G Mayer, ...
Photogrammetric Computer Vision at European Conference on Computer Vision (ECCV), 2014
Mapping planetary caves with an autonomous, heterogeneous robot team
A Husain, H Jones, B Kannan, U Wong, T Pimentel, S Tang, S Daftry, ...
IEEE Aerospace Conference (Aero'13), 2013
Maars: Machine learning-based analytics for automated rover systems
M Ono, B Rothrock, K Otsu, S Higa, Y Iwashita, A Didier, T Islam, ...
2020 IEEE aerospace conference, 1-17, 2020
Robust Monocular Flight in Cluttered Outdoor Environments
S Daftry, S Zeng, A Khan, D Dey, N Melik-Barkhudarov, JA Bagnell, ...
IEEE International Conference on Intelligent Robots and Systems (IROS) Workshop, 2016
Where to look? Predictive perception with applications to planetary exploration
K Otsu, AA Agha-Mohammadi, M Paton
IEEE Robotics and Automation Letters 3 (2), 635-642, 2017
Machine learning based path planning for improved rover navigation
N Abcouwer, S Daftry, T Del Sesto, O Toupet, M Ono, S Venkatraman, ...
2021 IEEE Aerospace Conference (50100), 1-9, 2021
Flexible and User-Centric Camera Calibration using Planar Fiducial Markers
S Daftry, M Maurer, A Wendel, H Bischof
British Machine Vision Conference (BMVC), 2013
NeBula: TEAM CoSTAR’s robotic autonomy solution that won phase II of DARPA subterranean challenge
B Morrell, R Thakker, À Santamaria Navarro, A Bouman, X Lei, J Edlund, ...
Field robotics 2, 1432-1506, 2022
Autonomous Planetary Landing via Deep Reinforcement Learning and Transfer Learning
G Ciabatti, S Daftry, R Capobianco
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021
Lunar rover localization using craters as landmarks
L Matthies, S Daftry, S Tepsuporn, Y Cheng, D Atha, RM Swan, ...
2022 IEEE Aerospace Conference (AERO), 1-17, 2022
MLNav: Learning to Safely Navigate on Martian Terrains
S Daftry, N Abcouwer, T Del Sesto, S Venkatraman, J Song, L Igel, A Byon, ...
IEEE Robotics and Automation Letters 7 (2), 5461-5468, 2022
Semi-Dense Visual Odometry for Monocular Navigation in Cluttered Environment
S Daftry, D Dey, H Sandhawalia, S Zeng, JA Bagnell, M Hebert
IEEE International Conference on Robotics and Automation (ICRA) Workshop, 2015
Terrain Relative Navigation for Guided Descent on Titan
L Matthies, S Daftry, B Rothrock, A Davis, R Hewitt, E Sklyanskiy, ...
IEEE Aerospace Conference, 2020
LunarNav: Crater-based Localization for Long-range Autonomous Lunar Rover Navigation
S Daftry, Z Chen, Y Cheng, S Tepsuporn, B Coltin, U Naal, LM Ma, ...
arXiv preprint arXiv:2301.01350, 2023
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20