Folgen
Jared Callaham
Titel
Zitiert von
Zitiert von
Jahr
PySINDy: A comprehensive Python package for robust sparse system identification
AA Kaptanoglu, BM de Silva, U Fasel, K Kaheman, AJ Goldschmidt, ...
arXiv preprint arXiv:2111.08481, 2021
1522021
Robust flow reconstruction from limited measurements via sparse representation
JL Callaham, K Maeda, SL Brunton
Physical Review Fluids 4 (10), 103907, 2019
1482019
Promoting global stability in data-driven models of quadratic nonlinear dynamics
AA Kaptanoglu, JL Callaham, A Aravkin, CJ Hansen, SL Brunton
Physical Review Fluids 6 (9), 094401, 2021
922021
Nonlinear stochastic modeling with Langevin regression
JL Callaham, JC Loiseau, G Rigas, SL Brunton
Proceedings of the Royal Society A 477 (2250), 2021
872021
Learning dominant physical processes with data-driven balance models
JL Callaham, JV Koch, BW Brunton, JN Kutz, SL Brunton
Nature communications 12 (1), 1016, 2021
802021
On the role of nonlinear correlations in reduced-order modelling
JL Callaham, SL Brunton, JC Loiseau
Journal of Fluid Mechanics 938, A1, 2022
532022
Dimensionally consistent learning with buckingham pi
J Bakarji, J Callaham, SL Brunton, JN Kutz
Nature Computational Science 2 (12), 834-844, 2022
402022
An empirical mean-field model of symmetry-breaking in a turbulent wake
JL Callaham, G Rigas, JC Loiseau, SL Brunton
Science Advances 8 (19), eabm4786, 2022
392022
Physics-informed machine learning for sensor fault detection with flight test data
BM de Silva, J Callaham, J Jonker, N Goebel, J Klemisch, D McDonald, ...
arXiv preprint arXiv:2006.13380, 2020
362020
Population annealing simulations of a binary hard-sphere mixture
J Callaham, J Machta
Physical Review E 95 (6), 063315, 2017
192017
Hybrid Learning Approach to Sensor Fault Detection with Flight Test Data
BM de Silva, J Callaham, J Jonker, N Goebel, J Klemisch, D McDonald, ...
AIAA Journal 59 (9), 3490-3503, 2021
112021
Robust reconstruction of flow fields from limited measurements
J Callaham, K Maeda, S Brunton
Bulletin of the American Physical Society 63, 2018
52018
Machine Learning to Discover Interpretable Models in Fluids and Plasmas
A Kaptanoglu, J Callaham, C Hansen, S Brunton
APS March Meeting Abstracts 2022, S49. 002, 2022
42022
Data-driven stochastic modeling of coarse-grained dynamics with finite-size effects using Langevin regression
J Snyder, JL Callaham, SL Brunton, JN Kutz
Physica D: Nonlinear Phenomena 427, 133004, 2021
42021
Multiscale model reduction for incompressible flows
JL Callaham, JC Loiseau, SL Brunton
Journal of Fluid Mechanics 973, A3, 2023
22023
HydroGym: A Reinforcement Learning Control Framework for Fluid Dynamics
L Paehler, J Callaham, S Ahnert, N Adams, S Brunton
Bulletin of the American Physical Society, 2023
2023
An open-source fluid-structure interaction code for anyone and everyone
N OBrien, A Machado Burgos, S Balasubramanian, J Callaham, A Goza
Bulletin of the American Physical Society 67, 2022
2022
Network-based feedback control of Fluid Flows
K Taira, S Brunton, C Shih, A Nair, CA Yeh, Z Bai, J Callaham
2022
Multiscale model reduction for unsteady fluid flow
J Callaham
University of Washington, 2022
2022
Unsupervised Learning of Dimensionless Groups and Minimally Parametrized Equations
J Bakarji, S Brunton, N Kutz, J Callaham
APS Division of Fluid Dynamics Meeting Abstracts, A31. 003, 2021
2021
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20