Phase change memory HSP Wong, S Raoux, SB Kim, J Liang, JP Reifenberg, B Rajendran, ... Proceedings of the IEEE 98 (12), 2201-2227, 2010 | 2244 | 2010 |
Phase change memory technology GW Burr, MJ Breitwisch, M Franceschini, D Garetto, K Gopalakrishnan, ... Journal of Vacuum Science & Technology B 28 (2), 223-262, 2010 | 1267 | 2010 |
Neuromorphic computing with multi-memristive synapses I Boybat, M Le Gallo, SR Nandakumar, T Moraitis, T Parnell, T Tuma, ... Nature communications 9 (1), 2514, 2018 | 750 | 2018 |
A 45nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons J Seo, B Brezzo, Y Liu, BD Parker, SK Esser, RK Montoye, B Rajendran, ... 2011 IEEE Custom Integrated Circuits Conference (CICC), 1-4, 2011 | 461 | 2011 |
Accurate deep neural network inference using computational phase-change memory V Joshi, M Le Gallo, S Haefeli, I Boybat, SR Nandakumar, C Piveteau, ... Nature communications 11 (1), 2473, 2020 | 435 | 2020 |
Write strategies for 2 and 4-bit multi-level phase-change memory T Nirschl, JB Philipp, TD Happ, GW Burr, B Rajendran, MH Lee, A Schrott, ... 2007 IEEE International Electron Devices Meeting, 461-464, 2007 | 350 | 2007 |
Sequential 3D IC fabrication: Challenges and prospects B Rajendran Proceedings of VLSI Multi Level Interconnect Conference, 57-64, 2006 | 249 | 2006 |
Nano-graphoepitaxy of semiconductors for 3D integration F Crnogorac, DJ Witte, Q Xia, B Rajendran, DS Pickard, Z Liu, A Mehta, ... Microelectronic Engineering 84 (5-8), 891-894, 2007 | 243 | 2007 |
Thermal Simulation of Laser Annealing for 3D Integration B Rajendran, SH Jain, TA Kramer, RFW Pease VMIC, 2003 | 234 | 2003 |
CMOS transistor processing compatible with monolithic 3-D Integration B Rajendran, RS Shenoy, DJ Witte, NS Chokshi, RL DeLeon, GS Tompa, ... International VLSI Multilevel Interconnection Conference, 2005 | 233 | 2005 |
Electrical Integrity of MOS Devices in Laser Annealed 3D IC Structures B Rajendran, RS Shenoy, MO Thompson, RFW Pease proceedings VLSI Multi Level Interconnect Conference, 73-74, 2004 | 233 | 2004 |
Memristors—From in‐memory computing, deep learning acceleration, and spiking neural networks to the future of neuromorphic and bio‐inspired computing A Mehonic, A Sebastian, B Rajendran, O Simeone, E Vasilaki, AJ Kenyon Advanced Intelligent Systems 2 (11), 2000085, 2020 | 226 | 2020 |
Nanoscale electronic synapses using phase change devices BL Jackson, B Rajendran, GS Corrado, M Breitwisch, GW Burr, R Cheek, ... ACM Journal on Emerging Technologies in Computing Systems (JETC) 9 (2), 1-20, 2013 | 195 | 2013 |
Specifications of nanoscale devices and circuits for neuromorphic computational systems B Rajendran, Y Liu, J Seo, K Gopalakrishnan, L Chang, DJ Friedman, ... IEEE Transactions on Electron Devices 60 (1), 246-253, 2012 | 194 | 2012 |
Spiking neural networks for handwritten digit recognition—Supervised learning and network optimization SR Kulkarni, B Rajendran Neural Networks 103, 118-127, 2018 | 183 | 2018 |
Area efficient neuromorphic circuits using field effect transistors (FET) and variable resistance material MJ Breitwisch, CH Lam, DS Modha, B Rajendran US Patent 8,311,965, 2012 | 182 | 2012 |
Hardware analog-digital neural networks BG Elmegreen, R Linsker, DM Newns, B Rajendran, RD Traub US Patent 8,275,727, 2012 | 177 | 2012 |
Phase Change Memory: From Devices to Systems MK Qureshi, S Gurumurthi, B Rajendran Synthesis Lectures on Computer Architecture 6 (4), 1-134, 2011 | 176 | 2011 |
Low-Power Neuromorphic Hardware for Signal Processing Applications: A review of architectural and system-level design approaches B Rajendran, A Sebastian, M Schmuker, N Srinivasa, E Eleftheriou IEEE Signal Processing Magazine, 2019 | 172 | 2019 |
Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation Z Li, B Rajendran, TI Kamins, X Li, Y Chen, RS Williams Applied Physics A 80, 1257-1263, 2005 | 168 | 2005 |