Folgen
Martin Sundermeyer
Martin Sundermeyer
Bestätigte E-Mail-Adresse bei google.com
Titel
Zitiert von
Zitiert von
Jahr
Implicit 3d orientation learning for 6d object detection from rgb images
M Sundermeyer, ZC Marton, M Durner, M Brucker, R Triebel
Proceedings of the european conference on computer vision (ECCV), 699-715, 2018
6242018
Contact-graspnet: Efficient 6-dof grasp generation in cluttered scenes
M Sundermeyer, A Mousavian, R Triebel, D Fox
International Conference on Robotics and Automation (ICRA) 2021, 2021
2462021
BOP challenge 2020 on 6D object localization
T Hodaň, M Sundermeyer, B Drost, Y Labbé, E Brachmann, F Michel, ...
Computer Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020 …, 2020
2412020
Blenderproc
M Denninger, M Sundermeyer, D Winkelbauer, Y Zidan, D Olefir, ...
arXiv preprint arXiv:1911.01911, 2019
2242019
Augmented autoencoders: Implicit 3d orientation learning for 6d object detection
M Sundermeyer, ZC Marton, M Durner, R Triebel
International Journal of Computer Vision 128 (3), 714-729, 2020
1162020
Multi-path learning for object pose estimation across domains
M Sundermeyer, M Durner, EY Puang, ZC Marton, N Vaskevicius, ...
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020
972020
Blenderproc: Reducing the reality gap with photorealistic rendering
M Denninger, M Sundermeyer, D Winkelbauer, D Olefir, T Hodan, Y Zidan, ...
International Conference on Robotics: Sciene and Systems, RSS 2020, 2020
892020
Blenderproc2: A procedural pipeline for photorealistic rendering
M Denninger, D Winkelbauer, M Sundermeyer, W Boerdijk, MW Knauer, ...
Journal of Open Source Software 8 (82), 4901, 2023
422023
BOP challenge 2022 on detection, segmentation and pose estimation of specific rigid objects
M Sundermeyer, T Hodan, Y Labbe, G Wang, E Brachmann, B Drost, ...
IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2023
372023
Iterative corresponding geometry: Fusing region and depth for highly efficient 3d tracking of textureless objects
M Stoiber, M Sundermeyer, R Triebel
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022
332022
Unknown Object Segmentation from Stereo Images
M Durner, W Boerdijk, M Sundermeyer, W Friedl, ZC Marton, R Triebel
International Conference on Intelligent Robots and Systems (IROS) 2021, 2021
312021
Rock instance segmentation from synthetic images for planetary exploration missions
W Boerdijk, MG Müller, M Durner, M Sundermeyer, W Friedl, A Gawel, ...
2021 IEE/RSJ International Conference on Intelligent Robots and Systems …, 2021
92021
" What's This?"--Learning to Segment Unknown Objects from Manipulation Sequences
W Boerdijk, M Sundermeyer, M Durner, R Triebel
Conference on Robot Learning (CoRL) 2020, 2020
62020
Self-Supervised Object-in-Gripper Segmentation from Robotic Motions
W Boerdijk, M Sundermeyer, M Durner, R Triebel
Conference on Robot Learning (CoRL) 2019, 2020
62020
6DoF Pose Estimation for Industrial Manipulation based on Synthetic Data
M Brucker, M Durner, ZC Marton, F Bálint-Benczédi, M Sundermeyer, ...
International Symposium on Experimental Robotic (ISER), 2018
52018
Learning Implicit Representations of 3D Object Orientations from RGB
M Sundermeyer, EY Puang, ZC Marton, M Durner, R Triebel
ICRA Workshop: Representing a Complex World, 2018
52018
A Multi-body Tracking Framework-From Rigid Objects to Kinematic Structures
M Stoiber, M Sundermeyer, W Boerdijk, R Triebel
arXiv preprint arXiv:2208.01502, 2022
22022
6D Object Pose Estimation from Approximate 3D Models for Orbital Robotics
M Ulmer, M Durner, M Sundermeyer, M Stoiber, R Triebel
2023 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2023
12023
Machine learning of grasp poses in a cluttered environment
M Sundermeyer, A Mousavian, D Fox
US Patent App. 17/198,082, 2022
12022
Towards Robust Perception of Unknown Objects in the Wild
W Boerdijk, M Durner, M Sundermeyer, R Triebel
ICRA 2022 workshop on “Robotic Perception and Mapping: Emerging Techniques”, 2022
12022
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20