existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditionsF Andreu, N Igbida, JM Mazón, J Toledo
Annales de l'IHP Analyse non linéaire 24 (1), 61-89, 2007
79 2007 A degenerate elliptic-parabolic problem with nonlinear dynamical boundary conditions F Andreu, JM Mazón, J Toledo, N Igbida
Interfaces and Free Boundaries 8 (4), 447-479, 2006
64 2006 On a dual formulation for the growing sandpile problem S Dumont, N Igbida
European Journal of Applied Mathematics 20 (2), 169-185, 2009
44 2009 Uniqueness for nonlinear degenerate problems N Igbida, JM Urbano
Nonlinear Differential Equations and Applications NoDEA 10, 287-307, 2003
40 2003 Renormalized solutions for degenerate elliptic–parabolic problems with nonlinear dynamical boundary conditions and L1-data F Andreu, N Igbida, JM Mazón, J Toledo
Journal of differential equations 244 (11), 2764-2803, 2008
39 2008 A degenerate diffusion problem with dynamical boundary conditions Diffusion problem with dynamical boundary conditions: Diffusion problem with dynamical boundary conditions N Igbida, M Kirane
Mathematische Annalen 323 (2), 377-396, 2002
33 2002 On uniqueness techniques for degenerate convection-diffusion problems B Andreianov, N Igbida
International journal of dynamical systems and differential equations 4 (1-2 …, 2012
26 2012 The mesa-limit of the porous-medium equation and the Hele-Shaw problem N Igbida
24 2002 Augmented Lagrangian method for optimal partial transportation N Igbida, VT Nguyen
IMA Journal of Numerical Analysis 38 (1), 156-183, 2018
23 2018 Elliptic problem involving diffuse measure data N Igbida, S Ouaro, S Soma
Journal of Differential Equations 253 (12), 3159-3183, 2012
22 2012 Equivalent formulations for Monge–Kantorovich equation N Igbida
Nonlinear Analysis: Theory, Methods & Applications 71 (9), 3805-3813, 2009
21 2009 A Monge–Kantorovich mass transport problem for a discrete distance N Igbida, JM Mazón, JD Rossi, J Toledo
Journal of Functional Analysis 260 (12), 3494-3534, 2011
20 2011 Renormalized solution for Stefan type problems: existence and uniqueness N Igbida, K Sbihi, P Wittbold
NoDEA Nonlinear Differential Equations Appl 17 (1), 69-93, 2010
20 2010 On the collapsing sandpile problem S Dumont, N Igbida
Communications on Pure and Applied Mathematics 10 (2), 625-638, 2011
18 2011 Evolution monge–kantorovich equation N Igbida
Journal of Differential Equations 255 (7), 1383-1407, 2013
16 2013 Singular limit of perturbed nonlinear semigroups P Bénilan, N Igbida
Comm. Appl. Nonlinear Anal 3 (4), 23-42, 1996
16 1996 Obstacle problems for degenerate elliptic equations with nonhomogeneous nonlinear boundary conditions F Andreu, N Igbida, JM Mazon, J Toledo
Mathematical Models and Methods in Applied Sciences 18 (11), 1869-1893, 2008
15 2008 Hele-Shaw type problems with dynamical boundary conditions N Igbida
Journal of mathematical analysis and applications 335 (2), 1061-1078, 2007
15 2007 A generalized collapsing sandpile model N Igbida
Archiv der Mathematik 94 (2), 193-200, 2010
14 2010 Uniqueness for inhomogeneous Dirichlet problem for elliptic–parabolic equations BP Andreianov, N Igbida
Proceedings of the Royal Society of Edinburgh Section A: Mathematics 137 (6 …, 2007
14 2007