William Anderson
William Anderson
Bestätigte E-Mail-Adresse bei - Startseite
Zitiert von
Zitiert von
Numerical and experimental study of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise heterogeneous roughness
W Anderson, JM Barros, KT Christensen, A Awasthi
Journal of Fluid Mechanics 768, 316-347, 2015
Turbulent boundary layer flow over transverse aerodynamic roughness transitions: induced mixing and flow characterization
D Willingham, W Anderson, KT Christensen, JM Barros
Physics of Fluids 26 (2), 025111, 2014
Large-Eddy Simulation of the Atmospheric Boundary Layer
R Stoll, JA Gibbs, ST Salesky, W Anderson, M Calaf
Boundary-Layer Meteorology, 1-41, 2020
Dynamic roughness model for large-eddy simulation of turbulent flow over multiscale, fractal-like rough surfaces
W Anderson, C Meneveau
Journal of Fluid Mechanics 679, 288-314, 2011
The Persistent Challenge of Surface Heterogeneity in Boundary-Layer Meteorology: A Review
E Bou-Zeid, W Anderson, GG Katul, L Mahrt
Boundary-Layer Meteorology, 1-19, 2020
Numerical Study of Turbulent Channel Flow over Surfaces with Variable Spanwise Heterogeneities: Topographically-driven Secondary Flows Affect Outer-layer Similarity of …
J Yang, W Anderson
Flow, Turbulence and Combustion, 1-17, 2017
Buoyancy effects on large-scale motions in convective atmospheric boundary layers: implications for modulation of near-wall processes
ST Salesky, W Anderson
Journal of Fluid Mechanics 856, 135-168, 2018
Amplitude modulation of streamwise velocity fluctuations in the roughness sublayer: evidence from large-eddy simulations
W Anderson
Journal of Fluid Mechanics 789, 567-588, 2016
A large-eddy simulation model for boundary-layer flow over surfaces with horizontally resolved but vertically unresolved roughness elements
W Anderson, C Meneveau
Boundary-layer meteorology 137 (3), 397-415, 2010
Quality and reliability of LES of convective scalar transfer at high Reynolds numbers
Q Li, E Bou-Zeid, W Anderson, S Grimmond, M Hultmark
International Journal of Heat and Mass Transfer 102, 959-970, 2016
Conditionally averaged large-scale motions in the neutral atmospheric boundary layer: Insights for aeolian processes
C Jacob, W Anderson
Boundary-Layer Meteorology 162 (1), 21-41, 2017
The impact and treatment of the Gibbs phenomenon in immersed boundary method simulations of momentum and scalar transport
Q Li, E Bou-Zeid, W Anderson
Journal of Computational Physics 310, 237-251, 2016
Carving intracrater layered deposits with wind on Mars
M Day, W Anderson, G Kocurek, D Mohrig
Geophysical Research Letters 43 (6), 2473-2479, 2016
Numerical simulation of flow over urban-like topographies and evaluation of turbulence temporal attributes
W Anderson, Q Li, E Bou-Zeid
Journal of Turbulence 16 (9), 809-831, 2015
An immersed boundary method wall model for high‐Reynolds‐number channel flow over complex topography
W Anderson
International Journal for Numerical Methods in Fluids 71 (12), 1588-1608, 2013
Numerical study of turbulent flow over complex aeolian dune fields: The White Sands National Monument
W Anderson, M Chamecki
Physical Review E 89 (1), 013005, 2014
Numerical study of turbulent channel flow perturbed by spanwise topographic heterogeneity: Amplitude and frequency modulation within low- and high-momentum pathways
A Awasthi, W Anderson
Physical Review Fluids 3, 044602, 2018
Parametric Study of Urban-Like Topographic Statistical Moments Relevant to a Priori Modelling of Bulk Aerodynamic Parameters
X Zhu, GV Iungo, S Leonardi, W Anderson
Boundary-Layer Meteorology 162 (2), 231-253, 2017
Large-eddy simulation of atmospheric boundary-layer flow over fluvial-like landscapes using a dynamic roughness model
W Anderson, P Passalacqua, F Porté-Agel, C Meneveau
Boundary-layer meteorology 144 (2), 263-286, 2012
Comparison of dynamic subgrid-scale models for simulations of neutrally buoyant shear-driven atmospheric boundary layer flows
WC Anderson, S Basu, CW Letchford
Environmental Fluid Mechanics 7 (3), 195-215, 2007
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20