Yuexiang Zhai
Yuexiang Zhai
Sonstige NamenSimon Zhai
Bestätigte E-Mail-Adresse bei - Startseite
Zitiert von
Zitiert von
Complete dictionary learning via l4-norm maximization over the orthogonal group
Y Zhai, Z Yang, Z Liao, J Wright, Y Ma
Journal of Machine Learning Research 21 (165), 1-68, 2020
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image
Y Zhou, H Qi, Y Zhai, Q Sun, Z Chen, LY Wei, Y Ma
International Conference on Computer Vision (ICCV), 2019, 2019
Cal-ql: Calibrated offline rl pre-training for efficient online fine-tuning
M Nakamoto, S Zhai, A Singh, M Sobol Mark, Y Ma, C Finn, A Kumar, ...
Advances in Neural Information Processing Systems 36, 2024
Investigating the Catastrophic Forgetting in Multimodal Large Language Model Fine-Tuning
Y Zhai, S Tong, X Li, M Cai, Q Qu, YJ Lee, Y Ma
Conference on Parsimony and Learning, 202-227, 2024
Eyes wide shut? exploring the visual shortcomings of multimodal llms
S Tong, Z Liu, Y Zhai, Y Ma, Y LeCun, S Xie
arXiv preprint arXiv:2401.06209, 2024
Unpacking reward shaping: Understanding the benefits of reward engineering on sample complexity
A Gupta, A Pacchiano, Y Zhai, S Kakade, S Levine
Advances in Neural Information Processing Systems 35, 15281-15295, 2022
Geometric analysis of nonconvex optimization landscapes for overcomplete learning
Q Qu, Y Zhai, X Li, Y Zhang, Z Zhu
International Conference on Learning Representations, 2019
Convolutional normalization: Improving deep convolutional network robustness and training
S Liu, X Li, Y Zhai, C You, Z Zhu, C Fernandez-Granda, Q Qu
Advances in neural information processing systems 34, 28919-28928, 2021
Understanding l4-based Dictionary Learning: Interpretation, Stability, and Robustness
Y Zhai, H Mehta, Z Zhou, Y Ma
International Conference on Learning Representations (ICLR), 2020, 2020
Computational Benefits of Intermediate Rewards for Goal-Reaching Policy Learning
Y Zhai, C Baek, Z Zhou, J Jiao, Y Ma
Journal of Artificial Intelligence Research 73, 847-896, 2022
Analysis of the optimization landscapes for overcomplete representation learning
Q Qu, Y Zhai, X Li, Y Zhang, Z Zhu
arXiv preprint arXiv:1912.02427, 2019
Understanding the complexity gains of single-task rl with a curriculum
Q Li, Y Zhai, Y Ma, S Levine
International Conference on Machine Learning, 20412-20451, 2023
Lmrl gym: Benchmarks for multi-turn reinforcement learning with language models
M Abdulhai, I White, CV Snell, C Sun, J Hong, Y Zhai, K Xu, S Levine
Closed-Loop Transcription via Convolutional Sparse Coding
X Dai, K Chen, S Tong, J Zhang, X Gao, M Li, D Pai, Y Zhai, XI Yuan, ...
arXiv preprint arXiv:2302.09347, 2023
RLIF: Interactive Imitation Learning as Reinforcement Learning
J Luo, P Dong, Y Zhai, Y Ma, S Levine
arXiv preprint arXiv:2311.12996, 2023
White-Box Transformers via Sparse Rate Reduction: Compression Is All There Is?
Y Yu, S Buchanan, D Pai, T Chu, Z Wu, S Tong, H Bai, Y Zhai, ...
arXiv preprint arXiv:2311.13110, 2023
Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning
Y Zhai, H Bai, Z Lin, J Pan, S Tong, Y Zhou, A Suhr, S Xie, Y LeCun, Y Ma, ...
arXiv preprint arXiv:2405.10292, 2024
Is Offline Decision Making Possible with Only Few Samples? Reliable Decisions in Data-Starved Bandits via Trust Region Enhancement
R Zhang, Y Zhai, A Zanette
arXiv preprint arXiv:2402.15703, 2024
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–18