Folgen
Razvan Pascanu
Titel
Zitiert von
Zitiert von
Jahr
On the difficulty of training recurrent neural networks
R Pascanu, T Mikolov, Y Bengio
International conference on machine learning, 1310-1318, 2013
72712013
Overcoming catastrophic forgetting in neural networks
J Kirkpatrick, R Pascanu, N Rabinowitz, J Veness, G Desjardins, AA Rusu, ...
Proceedings of the national academy of sciences 114 (13), 3521-3526, 2017
69672017
Relational inductive biases, deep learning, and graph networks
PW Battaglia, JB Hamrick, V Bapst, A Sanchez-Gonzalez, V Zambaldi, ...
arXiv preprint arXiv:1806.01261, 2018
35322018
Progressive neural networks
AA Rusu, NC Rabinowitz, G Desjardins, H Soyer, J Kirkpatrick, ...
arXiv preprint arXiv:1606.04671, 2016
28082016
On the number of linear regions of deep neural networks
GF Montufar, R Pascanu, K Cho, Y Bengio
Advances in neural information processing systems 27, 2014
27532014
Theano: a CPU and GPU math expression compiler
J Bergstra, O Breuleux, F Bastien, P Lamblin, R Pascanu, G Desjardins, ...
Proceedings of the Python for scientific computing conference (SciPy) 4 (3), 1-7, 2010
20222010
A simple neural network module for relational reasoning
A Santoro, D Raposo, DG Barrett, M Malinowski, R Pascanu, P Battaglia, ...
Advances in neural information processing systems 30, 2017
18512017
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization
YN Dauphin, R Pascanu, C Gulcehre, K Cho, S Ganguli, Y Bengio
Advances in neural information processing systems 27, 2014
17522014
Theano: new features and speed improvements
F Bastien, P Lamblin, R Pascanu, J Bergstra, I Goodfellow, A Bergeron, ...
arXiv preprint arXiv:1211.5590, 2012
16992012
Interaction networks for learning about objects, relations and physics
P Battaglia, R Pascanu, M Lai, D Jimenez Rezende
Advances in neural information processing systems 29, 2016
15842016
Meta-learning with latent embedding optimization
AA Rusu, D Rao, J Sygnowski, O Vinyals, R Pascanu, S Osindero, ...
arXiv preprint arXiv:1807.05960, 2018
15492018
How to construct deep recurrent neural networks
R Pascanu, C Gulcehre, K Cho, Y Bengio
arXiv preprint arXiv:1312.6026, 2013
13562013
Learning to navigate in complex environments
P Mirowski, R Pascanu, F Viola, H Soyer, AJ Ballard, A Banino, M Denil, ...
arXiv preprint arXiv:1611.03673, 2016
9572016
Theano: A Python framework for fast computation of mathematical expressions
R Al-Rfou, G Alain, A Almahairi, C Angermueller, D Bahdanau, N Ballas, ...
arXiv e-prints, arXiv: 1605.02688, 2016
9162016
Progress & compress: A scalable framework for continual learning
J Schwarz, W Czarnecki, J Luketina, A Grabska-Barwinska, YW Teh, ...
International conference on machine learning, 4528-4537, 2018
8742018
Theano: A CPU and GPU Math Compiler in Python.
J Bergstra, O Breuleux, F Bastien, P Lamblin, R Pascanu, G Desjardins, ...
SciPy 4, 1-7, 2010
8542010
Model compression via distillation and quantization
A Polino, R Pascanu, D Alistarh
arXiv preprint arXiv:1802.05668, 2018
7792018
Understanding the exploding gradient problem
R Pascanu, T Mikolov, Y Bengio
CoRR, abs/1211.5063 2 (417), 1, 2012
7702012
Policy distillation
AA Rusu, SG Colmenarejo, C Gulcehre, G Desjardins, J Kirkpatrick, ...
arXiv preprint arXiv:1511.06295, 2015
7612015
Sharp minima can generalize for deep nets
L Dinh, R Pascanu, S Bengio, Y Bengio
International Conference on Machine Learning, 1019-1028, 2017
7382017
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20