Folgen
Srivatsan Krishnan
Srivatsan Krishnan
Bestätigte E-Mail-Adresse bei seas.harvard.edu - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Can FPGAs beat GPUs in accelerating next-generation deep neural networks?
E Nurvitadhi, G Venkatesh, J Sim, D Marr, R Huang, J Ong Gee Hock, ...
Proceedings of the 2017 ACM/SIGDA international symposium on field …, 2017
6172017
Accelerating recurrent neural networks in analytics servers: Comparison of FPGA, CPU, GPU, and ASIC
E Nurvitadhi, J Sim, D Sheffield, A Mishra, S Krishnan, D Marr
2016 26th International Conference on Field Programmable Logic and …, 2016
2472016
A Customizable Matrix Multiplication Framework for the Intel HARPv2 Xeon+ FPGA Platform: A Deep Learning Case Study
DJM Moss, S Krishnan, E Nurvitadhi, P Ratuszniak, C Johnson, J Sim, ...
Proceedings of the 2018 ACM/SIGDA International Symposium on Field …, 2018
1052018
MAVBench: Micro Aerial Vehicle Benchmarking
B Borojerdian, H Genc, S Krishnan, W Cui, A Faust, V Janapareddi
The 51st Annual IEEE/ACM International Symposium on Microarchitecture, 2018
1002018
Air learning: a deep reinforcement learning gym for autonomous aerial robot visual navigation
S Krishnan, B Boroujerdian, W Fu, A Faust, VJ Reddi
Machine Learning 110 (9), 2501-2540, 2021
85*2021
Widening access to applied machine learning with tinyml
VJ Reddi, B Plancher, S Kennedy, L Moroney, P Warden, A Agarwal, ...
arXiv preprint arXiv:2106.04008, 2021
732021
Learning to seek: Autonomous source seeking with deep reinforcement learning onboard a nano drone microcontroller
BP Duisterhof, S Krishnan, JJ Cruz, CR Banbury, W Fu, A Faust, ...
2021 IEEE International Conference on Robotics and Automation (ICRA), 2019
69*2019
Hardware accelerator architecture and template for web-scale k-means clustering
E Nurvitadhi, G Venkatesh, S Krishnan, S Subhaschandra, D Marr
US Patent App. 15/396,515, 2018
682018
QuaRL: Quantization for Fast and Environmentally Sustainable Reinforcement Learning
S Krishnan, S Chitlangia, M Lam, Z Wan, A Faust, VJ Reddi
Transactions on Machine Learning Research 2022, 2022
51*2022
Automatic Domain-Specific SoC Design for Autonomous Unmanned Aerial Vehicles
S Krishnan, Z Wan, K Bharadwaj, P Whatmough, A Faust, S Neuman, ...
55th ACM/IEEE International Symposium on Microarchitecture (MICRO 2022), 2022
47*2022
Tiny Robot Learning: Challenges and Directions for Machine Learning in Resource-Constrained Robots
SM Neuman, B Plancher, BP Duisterhof, S Krishnan, C Banbury, ...
2022 IEEE 4th International Conference on Artificial Intelligence Circuits …, 2022
422022
The sky is not the limit: A visual performance model for cyber-physical co-design in autonomous machines
S Krishnan, Z Wan, K Bhardwaj, P Whatmough, A Faust, GY Wei, ...
IEEE Computer Architecture Letters 19 (1), 38-42, 2020
392020
Roofline model for uavs: A bottleneck analysis tool for designing compute systems for autonomous drones
S Krishnan, Z Wan, K Bhardwaj, A Faust, VJ Reddi
arXiv preprint, 2021
27*2021
Customizable FPGA OpenCL matrix multiply design template for deep neural networks
J Yinger, E Nurvitadhi, D Capalija, A Ling, D Marr, S Krishnan, D Moss, ...
Field Programmable Technology (ICFPT), 2017 International Conference on, 259-262, 2017
182017
RL-Scope: Cross-stack profiling for deep reinforcement learning workloads
J Gleeson, M Gabel, G Pekhimenko, E de Lara, S Krishnan, ...
Proceedings of Machine Learning and Systems 3, 783-799, 2021
152021
The role of compute in autonomous aerial vehicles
B Boroujerdian, H Genc, S Krishnan, BP Duisterhof, B Plancher, ...
ACM Transactions on Computer SystemsVolume 39 Issue 1-4, 2019
14*2019
Methods and apparatus to provide user-level access authorization for cloud-based field-programmable gate arrays
S Subhaschandra, S Krishnan, B Thomas, P Marolia
US Patent 10,528,768, 2020
122020
Archgym: An open-source gymnasium for machine learning assisted architecture design
S Krishnan, A Yazdanbakhsh, S Prakash, J Jabbour, I Uchendu, S Ghosh, ...
Proceedings of the 50th Annual International Symposium on Computer …, 2023
102023
Autosoc: Automating algorithm-soc co-design for aerial robots
S Krishnan, T Tambe, Z Wan, VJ Reddi
arXiv preprint arXiv:2109.05683, 2021
102021
Multi-Agent Reinforcement Learning for Microprocessor Design Space Exploration
S Krishnan, N Jaques, S Omidshafiei, D Zhang, I Gur, VJ Reddi, A Faust
arXiv preprint arXiv:2211.16385, 2022
62022
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20