Stable task information from an unstable neural population ME Rule, AR Loback, DV Raman, LN Driscoll, CD Harvey, T O'Leary elife 9, e51121, 2020 | 89 | 2020 |
Delineating parameter unidentifiabilities in complex models DV Raman, J Anderson, A Papachristodoulou Physical Review E 95 (3), 032314, 2017 | 45 | 2017 |
Fundamental bounds on learning performance in neural circuits DV Raman, AP Rotondo, T O’Leary Proceedings of the National Academy of Sciences 116 (21), 10537-10546, 2019 | 42 | 2019 |
Optimal plasticity for memory maintenance during ongoing synaptic change DV Raman, T O'Leary elife 10, e62912, 2021 | 20 | 2021 |
The geometry of sloppiness E Dufresne, HA Harrington, DV Raman arXiv preprint arXiv:1608.05679, 2016 | 15 | 2016 |
Frozen algorithms: How the brain's wiring facilitates learning DV Raman, T O’Leary Current Opinion in Neurobiology 67, 207-214, 2021 | 13 | 2021 |
Human generalization of internal representations through prototype learning with goal-directed attention WW Pettine, DV Raman, AD Redish, JD Murray Nature Human Behaviour 7 (3), 442-463, 2023 | 8 | 2023 |
On the performance of nonlinear dynamical systems under parameter perturbation DV Raman, J Anderson, A Papachristodoulou Automatica 63, 265-273, 2016 | 7 | 2016 |
How Cerebellar Architecture and Dense Activation Patterns Facilitate Online Learning in Dynamic Tasks AP Rotondo, DV Raman, T O'Leary Available at SSRN 4391017, 2023 | 2 | 2023 |
Optimal synaptic dynamics for memory maintenance in the presence of noise DV Raman, T O’leary BioRxiv, 2020.08. 19.257220, 2020 | 2 | 2020 |
A new approach for estimating the robustness of parameter estimates to measurement noise DV Raman, J Anderson, A Papachristodoulou 2016 American Control Conference (ACC), 1820-1825, 2016 | 2 | 2016 |
How cerebellar architecture facilitates rapid online learning AP Rotondo, DV Raman, T O’Leary bioRxiv, 2022.10. 20.512268, 2022 | 1 | 2022 |
Stable task information from an unstable neural population AR Loback, ME Rule, DV Raman, LN Driscoll, CD Harvey, T O’Leary Preprint, Neuroscience, 2019 | 1 | 2019 |
On the identifiability of highly parameterised models of physical processes D Raman University of Oxford, 2016 | 1 | 2016 |
How Cerebellar Architecture and Dense Activation Patterns Facilitate Online Learning in Dynamic Tasks DV Raman, T O’Leary | | 2022 |
How cerebellar architecture aids online motor learning AP Rotondo, T O'Leary, DV Raman JOURNAL OF COMPUTATIONAL NEUROSCIENCE 49 (SUPPL 1), S149-S151, 2021 | | 2021 |
Human latent-state generalization through prototype learning with discriminative attention JDM Pettine, Warren W., Dhruva V. Raman, A. D. Redish PsyArXiv, 2021 | | 2021 |
The geometry of Sloppiness DV Raman, HA Harrington, E Dufresne, HA Harrington, DV Raman Journal of Algebraic Statistics 9 (1), 2018 | | 2018 |
Exercise 5 A brief introduction to LMIs S Soudjani, MS Darup, D Raman | | 2015 |
Bounds for Input-and State-to-Output Properties of Uncertain Linear Systems G Valmorbida, D Raman, J Anderson IFAC-PapersOnLine 48 (14), 1-6, 2015 | | 2015 |