Folgen
Thomas Czerniawski
Titel
Zitiert von
Zitiert von
Jahr
Semantic segmentation of point clouds of building interiors with deep learning: Augmenting training datasets with synthetic BIM-based point clouds
JW Ma, T Czerniawski, F Leite
Automation in construction 113, 103144, 2020
1542020
6D DBSCAN-based segmentation of building point clouds for planar object classification
T Czerniawski, B Sankaran, M Nahangi, C Haas, F Leite
Automation in Construction 88, 44-58, 2018
1172018
Automated digital modeling of existing buildings: A review of visual object recognition methods
T Czerniawski, F Leite
Automation in Construction 113, 103131, 2020
1112020
Pipe spool recognition in cluttered point clouds using a curvature-based shape descriptor
T Czerniawski, M Nahangi, C Haas, S Walbridge
Automation in Construction 71, 346-358, 2016
1042016
Automated segmentation of RGB-D images into a comprehensive set of building components using deep learning
T Czerniawski, F Leite
Advanced Engineering Informatics 45, 101131, 2020
592020
Automated building change detection with amodal completion of point clouds
T Czerniawski, JW Ma, F Leite
Automation in construction 124, 103568, 2021
362021
Automated removal of planar clutter from 3D point clouds for improving industrial object recognition
T Czerniawski, M Nahangi, S Walbridge, C Haas
ISARC. Proceedings of the International Symposium on Automation and Robotics …, 2016
362016
3DFacilities: annotated 3D reconstructions of building facilities
T Czerniawski, F Leite
Advanced Computing Strategies for Engineering: 25th EG-ICE International …, 2018
312018
Pipe radius estimation using Kinect range cameras
M Nahangi, T Czerniawski, CT Haas, S Walbridge
Automation in construction 99, 197-205, 2019
232019
Parallel systems and structural frames realignment planning and actuation strategy
M Nahangi, T Czerniawski, CT Haas, S Walbridge, J West
Journal of Computing in Civil Engineering 30 (4), 04015067, 2016
212016
An application of metadata-based image retrieval system for facility management
JW Ma, T Czerniawski, F Leite
Advanced Engineering Informatics 50, 101417, 2021
182021
Semantic segmentation of building point clouds using deep learning: a method for creating training data using BIM to point cloud label transfer
T Czerniawski, F Leite
ASCE International Conference on Computing in Civil Engineering 2019, 410-416, 2019
172019
Automated valve detection in piping and instrumentation (P&ID) diagrams
M Gupta, C Wei, T Czerniawski
Proceedings of the 39th International Symposium on Automation and Robotics …, 2022
102022
Automated 3D shape detection and outlier removal in cluttered laser scans of industrial assemblies
M Nahangi, T Czerniawski, CT Haas
Proc. of the International Conference of Innovation in Construction, 0-10, 2015
102015
Current state of interface management in mega-construction projects
S Shokri, S Ahn, T Czerniawski, CT Haas, SH Lee
Construction Research Congress 2014: Construction in a Global Network, 2266-2275, 2014
102014
Automated Wall Detection in 2D CAD Drawings to Create Digital 3D Models
C Wei, M Gupta, T Czerniawski
ISARC. Proceedings of the International Symposium on Automation and Robotics …, 2022
52022
3DFacilities
T Czerniawski, F Leite
Zenodo, 2018
52018
Visual programming simulator for producing realistic labeled point clouds from digital infrastructure models
K Korus, T Czerniawski, M Salamak
Automation in Construction 156, 105126, 2023
42023
Interoperability between deep neural networks and 3d architectural modeling software: Affordances of detection and segmentation
C Wei, M Gupta, T Czerniawski
Buildings 13 (9), 2336, 2023
32023
Automated scan-to-building information modeling
JW Ma, T Czerniawski, F Leite
Research Companion to Building Information Modeling, 169-189, 2022
32022
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20