Folgen
Martin Burtscher
Titel
Zitiert von
Zitiert von
Jahr
The tao of parallelism in algorithms
K Pingali, D Nguyen, M Kulkarni, M Burtscher, MA Hassaan, R Kaleem, ...
Proceedings of the 32nd ACM SIGPLAN conference on Programming language …, 2011
5362011
A quantitative study of irregular programs on GPUs
M Burtscher, R Nasre, K Pingali
2012 IEEE International Symposium on Workload Characterization (IISWC), 141-151, 2012
5132012
Bridging the processor-memory performance gap with 3D IC technology
CC Liu, I Ganusov, M Burtscher, S Tiwari
IEEE Design & Test of Computers 22 (6), 556-564, 2005
3642005
FPC: A high-speed compressor for double-precision floating-point data
M Burtscher, P Ratanaworabhan
IEEE transactions on computers 58 (1), 18-31, 2008
3402008
The VPC trace-compression algorithms
M Burtscher, I Ganusov, SJ Jackson, J Ke, P Ratanaworabhan, NB Sam
IEEE Transactions on Computers 54 (11), 1329-1344, 2005
3322005
Lonestar: A suite of parallel irregular programs
M Kulkarni, M Burtscher, C Casçaval, K Pingali
2009 IEEE International Symposium on Performance Analysis of Systems and …, 2009
2462009
Fast lossless compression of scientific floating-point data
P Ratanaworabhan, J Ke, M Burtscher
Data Compression Conference (DCC'06), 133-142, 2006
2422006
An efficient CUDA implementation of the tree-based barnes hut n-body algorithm
M Burtscher, K Pingali
GPU computing Gems Emerald edition, 75-92, 2011
2352011
How much parallelism is there in irregular applications?
M Kulkarni, M Burtscher, R Inkulu, K Pingali, C Casçaval
ACM sigplan notices 44 (4), 3-14, 2009
2222009
A comparison of 3D shape retrieval methods based on a large-scale benchmark supporting multimodal queries
B Li, Y Lu, C Li, A Godil, T Schreck, M Aono, M Burtscher, Q Chen, ...
Computer Vision and Image Understanding 131, 1-27, 2015
1592015
SHREC’14 track: Extended large scale sketch-based 3D shape retrieval
B Li, Y Lu, C Li, A Godil, T Schreck, M Aono, M Burtscher, H Fu, T Furuya, ...
Eurographics workshop on 3D object retrieval 2014, 121-130, 2014
1532014
Data-driven versus topology-driven irregular computations on GPUs
R Nasre, M Burtscher, K Pingali
2013 IEEE 27th International Symposium on Parallel and Distributed …, 2013
1532013
A GPU implementation of inclusion-based points-to analysis
M Mendez-Lojo, M Burtscher, K Pingali
ACM SIGPLAN Notices 47 (8), 107-116, 2012
1462012
Effects of dynamic voltage and frequency scaling on a k20 gpu
R Ge, R Vogt, J Majumder, A Alam, M Burtscher, Z Zong
2013 42nd International Conference on Parallel Processing, 826-833, 2013
1382013
Perfexpert: An easy-to-use performance diagnosis tool for hpc applications
M Burtscher, BD Kim, J Diamond, J McCalpin, L Koesterke, J Browne
SC'10: Proceedings of the 2010 ACM/IEEE International Conference for High …, 2010
1372010
Morph algorithms on GPUs
R Nasre, M Burtscher, K Pingali
Proceedings of the 18th ACM SIGPLAN symposium on Principles and practice of …, 2013
1352013
High throughput compression of double-precision floating-point data
M Burtscher, P Ratanaworabhan
2007 Data Compression Conference (DCC'07), 293-302, 2007
1352007
Measuring GPU power with the K20 built-in sensor
M Burtscher, I Zecena, Z Zong
Proceedings of Workshop on General Purpose Processing Using GPUs, 28-36, 2014
1212014
Ordered vs. unordered: a comparison of parallelism and work-efficiency in irregular algorithms
MA Hassaan, M Burtscher, K Pingali
Acm Sigplan Notices 46 (8), 3-12, 2011
1202011
VPC3: A fast and effective trace-compression algorithm
M Burtscher
ACM SIGMETRICS Performance Evaluation Review 32 (1), 167-176, 2004
922004
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20